scholarly journals Role of Toll-Like Receptor 4 in the Proinflammatory Response to Vibrio cholerae O1 El Tor Strains Deficient in Production of Cholera Toxin and Accessory Toxins

2005 ◽  
Vol 73 (9) ◽  
pp. 6157-6164 ◽  
Author(s):  
G. Kenneth Haines ◽  
Blayne Amir Sayed ◽  
Melissa S. Rohrer ◽  
Verena Olivier ◽  
Karla J. Fullner Satchell

ABSTRACT Following intranasal inoculation, Vibrio cholerae KFV101 (ΔctxAB ΔhapA ΔhlyA ΔrtxA) colonizes and stimulates tumor necrosis factor alpha and interleukin 1β (IL-1β) in mice, similar to what occurs with isogenic strain P4 (ΔctxAB), but is less virulent and stimulates reduced levels of IL-6, demonstrating a role for accessory toxins in pathogenesis. Morbidity is enhanced in C3H/HeJ mice, indicating that Toll-like receptor 4 is important for infection containment.

2011 ◽  
Vol 79 (4) ◽  
pp. 1638-1646 ◽  
Author(s):  
Natália B. Carvalho ◽  
Fernanda S. Oliveira ◽  
Fernanda V. Durães ◽  
Leonardo A. de Almeida ◽  
Manuela Flórido ◽  
...  

ABSTRACTTo investigate the role of Toll-like receptor 9 (TLR9) in innate immunity toMycobacteriumavium, TLR9, TLR2, and MyD88 knockout (KO) mice were infected with this bacterium. Bacterial burdens were higher in the spleens, livers, and lungs of infected TLR9 KO mice than in those of C57BL/6 mice, indicating that TLR9 is required for efficient control ofM.aviuminfection. However, TLR9 KO or TLR2 KO spleen cells displayed normalM.avium-induced tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) responses. This finding was confirmed by determining the number of splenic CD4+T cells producing IFN-γ by flow cytometry. Furthermore, TLR2 and MyD88, but not TLR9, played a major role in interleukin-12 and TNF-α production byM.avium-infected macrophages and dendritic cells (DCs). We also found that major histocompatibility complex class II molecule expression on DCs is regulated by TLR2 and MyD88 signaling but not by TLR9. Finally, lack of TLR9, TLR2, or MyD88 reduced the numbers of macrophages, epithelioid cells, and lymphocytes inM.avium-induced granulomas but only MyD88 deficiency affected the number of liver granulomas. In summary, our data demonstrated that the involvement of TLR9 in the control ofM.aviuminfection is not related to the induction of Th1 responses.


2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Xingzhao Ji ◽  
Xiujuan Zhang ◽  
Heqiao Li ◽  
Lina Sun ◽  
Xuexin Hou ◽  
...  

ABSTRACT The mechanism underlying the pathogenesis of Nocardia is not fully known. The Nfa34810 protein of Nocardia farcinica has been predicted to be a virulence factor. However, relatively little is known regarding the interaction of Nfa34810 with host cells, specifically invasion and innate immune activation. In this study, we aimed to determine the role of recombinant Nfa34810 during infection. We demonstrated that Nfa34810 is an immunodominant protein located in the cell wall. Nfa34810 protein was able to facilitate the uptake and internalization of latex beads coated with Nfa34810 protein into HeLa cells. Furthermore, the deletion of the nfa34810 gene in N. farcinica attenuated the ability of the bacteria to infect both HeLa and A549 cells. Moreover, stimulation with Nfa34810 triggered macrophages to produce tumor necrosis factor alpha (TNF-α), and it also activated mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways by inducing the phosphorylation of ERK1/2, p38, JNK, p65, and AKT in macrophages. Specific inhibitors of ERK1/2, JNK, and NF-κB significantly reduced the expression of TNF-α, which demonstrated that Nfa34810-mediated TNF-α production was dependent upon the activation of these kinases. We further found that neutralizing antibodies against Toll-like receptor 4 (TLR4) significantly inhibited TNF-α secretion. Taken together, our results indicated that Nfa34810 is a virulence factor of N. farcinica and plays an important role during infection. Nfa34810-induced production of TNF-α in macrophages also involves ERK, JNK, and NF-κB via the TLR4 pathway.


2003 ◽  
Vol 71 (2) ◽  
pp. 663-670 ◽  
Author(s):  
Marcia L. Hart ◽  
Derek A. Mosier ◽  
Stephen K. Chapes

ABSTRACT This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4Lps-del mouse strains C57BL10/ScN (B10) and STOCK Abb tm1 TLR4 Lps-del Slc11a1s (B10 × C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4Lps-del genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 × C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 × C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 × C2D mice, and there was earlier transcription of KC and MIP-1α in B10 × C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 × C2D mice, which lack CD4+ T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.


2008 ◽  
Vol 76 (8) ◽  
pp. 3717-3724 ◽  
Author(s):  
Jeffrey M. Jordan ◽  
Michael E. Woods ◽  
Juan Olano ◽  
David H. Walker

ABSTRACT The importance of toll-like receptor 4 (TLR4) in immunity to rickettsiae remains elusive. To investigate the role of TLR4 in protection against rickettsioses, we utilized C3H/HeJ mice, which are naturally defective in TLR4 signaling, and compared the responses of C3H/HeN and C3H/HeJ mice following intravenous inoculation with Rickettsia conorii. Mice genetically defective in TLR4 signaling developed overwhelming, fatal rickettsial infections when given an inoculum that was nonfatal for TLR4-competent mice. In addition, mice lacking the ability to signal through TLR4 had significantly greater rickettsial burdens in vivo. Moreover, we observed greater concentrations of the cytokines interleukin 6 (IL-6), tumor necrosis factor alpha, IL-12p40, IL-12p70, and IL-17 in the sera of mice with intact TLR4 function as well as significantly greater quantities of activated CD4+ and CD8+ T lymphocytes. Additionally, we also observed that Th17 cells were present only in TLR4-competent mice, suggesting an important role for TLR4 ligation in the activation of this subset. In agreement with these data, we also observed significantly greater percentages of immunosuppressive regulatory T cells in the spleen during infection in TLR4-defective mice. Together, these data demonstrate that, while rickettsiae do not contain endotoxic lipopolysaccharide, they nevertheless initiate TLR4-specific immune responses, and these responses are important in protection.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2167-2167
Author(s):  
Pradeep K Dagur ◽  
J. Philip McCoy ◽  
J Nichols ◽  
Laurel Mendelsohn ◽  
C Seamon ◽  
...  

Abstract Introduction Inflammation is increased and related to early mortality in patients with sickle cell disease.(1) This inflammation is associated with upregulation of Toll-like receptor 4 and iron regulated genes in human sickle cell peripheral blood mononuclear cells. In sickle cell mice, heme released during intravascular hemolysis augments pro-inflammatory Toll-like receptor 4 signalling and this results in subsequent organ damage and death. In this study we evaluated whether heme in human sickle cell monocytes is associated with increased Toll-like receptor 4 mediated pro-inflammatory cytokine production. Methods Fresh whole blood from patients (n=10) and controls (n=10) was used for a calcein assay to measure intracellular iron or was incubated with combinations of vehicle, a Toll-like receptor 4 ligand (lipopolysaccharide, 100 ng/ml) and/or an iron chelator (0.1 mM deferasirox (Exjade)). After three hours, the percentage of monocytes with detectable levels of intracellular interleukin-6 and tumor necrosis factor-alpha was quantified by flow cytometry. In an additional experiment fresh whole blood of patients (n=8) was incubated with combinations of vehicle, a Toll-like receptor 4 ligand (lipopolysaccharide, 1 ng/ml) and/or 20uM heme. Results Intracellular monocyte iron was correlated (R-spearman and P-value) positively with plasma levels of C-reactive protein in patients and controls (R=0.454, P=0.044), confirming that high intracellular iron in monocytes is associated with a pro-inflammatory state in vivo. Compared to incubation with lipopolysaccharide alone, co-incubation of fresh human sickle cell blood with lipopolysaccharide and heme increased the absolute percentage of monocytes producing interleukin-6 with a median 8.5% (interquartile range -5.6-22.1, p=0.17) and tumor necrosis factor-alpha with 15.2% (2.0-21.2, p=0.025). Incubation of fresh sickle cell monocytes with heme alone did not increase interleukin-6 and tumor necrosis factor-alpha production significantly (respectively 0.1% and 0.0%). Compared to incubation with lipopolysaccharide alone, co-incubation of lipopolysaccharide with the iron chelator deferasirox significantly decreased the absolute percentage of interleukin-6 producing monocytes with 20.4% (15.2-26.3) (P=0.004), further supporting the involvement of intracellular monocyte iron in Toll-like receptor 4 response. Conclusion We show that levels of intracellular monocyte iron correlate to markers of inflammation in human sickle cell patients. In an additional ex vivo experiment we show that the same monocytes have an increased Toll-like receptor 4 mediated inflammatory response when exposed to heme and a decreased inflammatory response when treated with an iron chelator. We suggest that heme bound iron which is released during intravascular hemolysis and scavenged by monocytes, is a cause of monocyte activation and pro-inflammatory state in sickle cell disease, by augmenting Toll-like receptor 4 signaling. Iron chelation might be an interesting therapeutic option to decrease this pro-inflammatory effect of heme. Figure Monocyte Toll-like receptor 4 dependent pro-inflammatory cytokine production is augmented by heme and inhibited by iron chelation. (A) Compared to incubation of fresh human sickle cell blood with the Toll-like receptor 4 ligand lipopolysaccharide alone, co-incubation of lipopolysaccharide together with the iron chelator deferasirox significantly decreased the absolute percentage of interleukin-6 producing monocytes with 20.4% (15.2-26.3) (P=0.004) (B) In contrast, compared to incubation with lipopolysaccharide alone, co-incubation lipopolysaccharide together with heme increased the absolute percentage of monocytes producing interleukin-6 with a median 8.5% (interquartile range -5.6-22.1, p=0.17) and tumor necrosis factor-alpha with 15.2% (2.0-21.2, p=0.025). *** p<0.005 *p<0.05 1. van Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, e.a. Iron, inflammation, and early death in adults with sickle cell disease. Circ Res. 16 januari 2015;116(2):298-306. Figure 1. Figure 1. Disclosures van Beers: Novartis: Research Funding.


2004 ◽  
Vol 72 (11) ◽  
pp. 6650-6658 ◽  
Author(s):  
Paul B. Mann ◽  
Kelly D. Elder ◽  
Mary J. Kennett ◽  
Eric T. Harvill

ABSTRACT Toll-like receptor 4 (TLR4) mediates the response to lipopolysaccharide, and its activation induces the expression of a large number of inflammatory genes, many of which are also induced by other pathogen-associated molecular patterns. Interestingly, the subset of genes that are dependent on TLR4 for optimal expression during gram-negative bacterial infection has not been determined. We have previously shown that TLR4-deficient mice rapidly develop acute pneumonia after inoculation with Bordetella bronchiseptica, suggesting that TLR4 is required for expression of early elicited gene products in this model. Microarray analysis with macrophages derived from wild-type and TLR4-deficient mice was used to identify genes whose expression, within 1 h of bacterial exposure, is dependent on TLR4. The results of this investigation suggest that TLR4 is not required for the majority of the transcriptional response to B. bronchiseptica. However, early tumor necrosis factor alpha (TNF-α) mRNA expression is primarily dependent on TLR4 and in vitro and in vivo protein levels substantiate this finding. TLR4-deficient mice and TNF-α−/− mice are similarly susceptible to infection with relatively low doses of B. bronchiseptica and in vivo neutralization studies indicate that it is the TLR4-dependent early elicited TNF-α response that is critical for preventing severe pneumonia and limiting bacterial growth. These results suggest that one critical role for TLR4 is the generation of a robust but transient TNF-α response that is critical to innate host defense during acute gram-negative respiratory infection.


Sign in / Sign up

Export Citation Format

Share Document