scholarly journals The Asymptomatic Bacteriuria Escherichia coli Strain 83972 Outcompetes Uropathogenic E. coli Strains in Human Urine

2006 ◽  
Vol 74 (1) ◽  
pp. 615-624 ◽  
Author(s):  
Viktoria Roos ◽  
Glen C. Ulett ◽  
Mark A. Schembri ◽  
Per Klemm

ABSTRACT Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract. The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human urine and show that it can outcompete a representative spectrum of UPEC strains for growth in urine. The unique ability of ABU E. coli 83972 to outcompete UPEC in urine was also demonstrated in a murine model of human UTI, confirming the selective advantage over UPEC in vivo. Comparison of global gene expression profiles of E. coli 83972 grown in lab medium and human urine revealed significant differences in expression levels in the two media; significant down-regulation of genes encoding virulence factors such as hemolysin, lipid A, and capsular polysaccharides was observed in cells grown in urine. Clearly, divergent abilities of ABU E. coli and UPEC to exploit human urine as a niche for persistence and survival suggest that these key differences may be exploited for preventative and/or therapeutic approaches.

2006 ◽  
Vol 74 (6) ◽  
pp. 3565-3575 ◽  
Author(s):  
Viktoria Roos ◽  
Per Klemm

ABSTRACT Urinary tract infections (UTIs) are an important health problem worldwide, with many million cases each year. Escherichia coli is the most common organism causing UTIs in humans. The asymptomatic bacteriuria E. coli strain 83972 is an excellent colonizer of the human urinary tract, where it causes long-term bladder colonization. The strain has been used for prophylactic purposes in patients prone to more severe and recurrent UTIs. For this study, we used DNA microarrays to monitor the expression profile of strain 83972 in the human urinary tract. Significant differences in expression levels were seen between the in vivo expression profiles of strain 83972 in three patients and the corresponding in vitro expression profiles in lab medium and human urine. The data revealed an in vivo lifestyle of microaerobic growth with respiration of nitrate coupled to degradation of sugar acids and amino acids, with no signs of attachment to host tissues. Interestingly, genes involved in NO protection and metabolism showed significant up-regulation in the patients. This is one of the first studies to address bacterial whole-genome expression in humans and the first study to investigate global gene expression of an E. coli strain in the human urinary tract.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Piotr Bielecki ◽  
Uthayakumar Muthukumarasamy ◽  
Denitsa Eckweiler ◽  
Agata Bielecka ◽  
Sarah Pohl ◽  
...  

ABSTRACTmRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression ofEscherichia colipathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associatedE. coliisolates to different phylogenetic groups. Whereas thein vivogene expression profiles of the majority of genes were conserved among 21E. colistrains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribedin vivorelative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease.IMPORTANCEUrinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenicEscherichia colistrains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenicE. coligene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Allyson E. Shea ◽  
Juan Marzoa ◽  
Stephanie D. Himpsl ◽  
Sara N. Smith ◽  
Lili Zhao ◽  
...  

ABSTRACT Urinary tract infections (UTI), the second most diagnosed infectious disease worldwide, are caused primarily by uropathogenic Escherichia coli (UPEC), placing a significant financial burden on the health care system. High-throughput transposon mutagenesis combined with genome-targeted sequencing is a powerful technique to interrogate genomes for fitness genes. Genome-wide analysis of E. coli requires random libraries of at least 50,000 mutants to achieve 99.99% saturation; however, the traditional murine model of ascending UTI does not permit testing of large mutant pools due to a bottleneck during infection. To address this, an E. coli CFT073 transposon mutant ordered library of 9,216 mutants was created and insertion sites were identified. A single transposon mutant was selected for each gene to assemble a condensed library consisting of 2,913 unique nonessential mutants. Using a modified UTI model in BALB/c mice, we identified 36 genes important for colonizing the bladder, including purB, yihE, and carB. Screening of the condensed library in vitro identified yigP and ubiG to be essential for growth in human urine. Additionally, we developed a novel quantitative PCR (qPCR) technique to identify genes with fitness defects within defined subgroups of related genes (e.g., genes encoding fimbriae, toxins, etc.) following UTI. The number of mutants within these subgroups circumvents bottleneck restriction and facilitates validation of multiple mutants to generate individual competitive indices. Collectively, this study investigates the bottleneck effects during UTI, provides two techniques for evading those effects that can be applied to other disease models, and contributes a genetic tool in prototype strain CFT073 to the field. IMPORTANCE Uropathogenic Escherichia coli strains cause most uncomplicated urinary tract infections (UTI), one of the most common infectious diseases worldwide. Random transposon mutagenesis techniques have been utilized to identify essential bacterial genes during infection; however, this has been met with limitations when applied to the murine UTI model. Conventional high-throughput transposon mutagenesis screens are not feasible because of inoculum size restrictions due to a bottleneck during infection. Our study utilizes a condensed ordered transposon library, limiting the number of mutants while maintaining the largest possible genome coverage. Screening of this library in vivo, and in human urine in vitro, identified numerous candidate fitness factors. Additionally, we have developed a novel technique using qPCR to quantify bacterial outputs following infection with small subgroups of transposon mutants. Molecular approaches developed in this study will serve as useful tools to probe in vivo models that are restricted by anatomical, physiological, or genetic bottleneck limitations.


2006 ◽  
Vol 75 (2) ◽  
pp. 966-976 ◽  
Author(s):  
Viktoria Hancock ◽  
Per Klemm

ABSTRACT Urinary tract infection (UTI) is an important health problem worldwide, with many millions of cases each year, and Escherichia coli is the most common organism causing UTI in humans. Also, E. coli is responsible for most infections in patients with chronic indwelling bladder catheter. The two asymptomatic bacteriuria (ABU) E. coli strains 83972 and VR50 are significantly better biofilm formers in their natural growth medium, human urine, than the two uropathogenic E. coli isolates CFT073 and 536. We used DNA microarrays to monitor the expression profile during biofilm growth in urine of the two ABU strains 83972 and VR50. Significant differences in expression levels were seen between the biofilm expression profiles of the two strains with the corresponding planktonic expression profiles in morpholinepropanesulfonic acid minimal laboratory medium and human urine; 417 and 355 genes were up- and down-regulated, respectively, during biofilm growth in urine of 83972 and VR50. Many genes involved in transcription and stress were up-regulated in biofilm-grown cells. The role in biofilm formation of four of the up-regulated genes, i.e., yceP, yqgA, ygiD, and aaeX, was investigated by creating single-knockout mutant versions of 83972 and VR50; all mutants showed reduced biofilm formation in urine by 18 to 43% compared with the wild type (P < 0.05). Also, the expression profile of strain 83972 in the human urinary tract partially overlaps with the biofilm expression profile.


2006 ◽  
Vol 75 (1) ◽  
pp. 278-289 ◽  
Author(s):  
Brian J. Haugen ◽  
Shahaireen Pellett ◽  
Peter Redford ◽  
Holly L. Hamilton ◽  
Paula L. Roesch ◽  
...  

ABSTRACT Deletional inactivation of the gene encoding d-serine deaminase, dsdA, in uropathogenic Escherichia coli strain CFT073 results in a hypermotile strain with a hypercolonization phenotype in the bladder and kidneys of mice in a model of urinary tract infection (UTI). The in vivo gene expression profiles of CFT073 and CFT073 dsdA were compared by isolating RNA directly from the urine of mice challenged with each strain individually. Hybridization of cDNAs derived from these samples to CFT073-specific microarrays allowed identification of genes that were up- or down-regulated in the dsdA deletion strain during UTI. Up-regulated genes included the known d-serine-responsive gene dsdX, suggesting in vivo intracellular accumulation of d-serine by CFT073 dsdA. Genes encoding F1C fimbriae, both copies of P fimbriae, hemolysin, OmpF, a dipeptide transporter DppA, a heat shock chaperone IbpB, and clusters of open reading frames with unknown functions were also up-regulated. To determine the role of these genes as well as motility in the hypercolonization phenotype, mutants were constructed in the CFT073 dsdA background and tested in competition against the wild type in the murine model of UTI. Strains with deletions of one or both of the two P fimbrial operons, hlyA, fliC, ibpB, c0468, locus c3566 to c3568, or c2485 to c2490 colonized mouse bladders and kidneys at levels indistinguishable from wild type. CFT073 dsdA c2398 and CFT073 dsdA focA maintained a hypercolonization phenotype. A CFT073 dsdA dppA mutant was attenuated 10- to 50-fold in its colonization ability compared to CFT073. Our results support a role for d-serine catabolism and signaling in global virulence gene regulation of uropathogenic E. coli.


2012 ◽  
Vol 80 (9) ◽  
pp. 3179-3188 ◽  
Author(s):  
Rebecca M. Vejborg ◽  
Mari R. de Evgrafov ◽  
Minh Duy Phan ◽  
Makrina Totsika ◽  
Mark A. Schembri ◽  
...  

ABSTRACTEscherichia coliis the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenicE. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU)E. colistrains typically lack essential virulence factors and colonize the bladder in the absence of symptoms. While ABUE. colican persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABUE. colistrain 83972 and the clinical ABUE. colistrain VR89. Six genes involved in the biosynthesis of various amino acids and nucleobases were identified (carB,argE,argC,purA,metE, andilvC), and site-specific mutants were subsequently constructed inE. coli83972 andE. coliVR89 for each of these genes. In all cases, these mutants exhibited reduced growth rates and final cell densities in human urine. The growth defects could be complemented intransas well as by supplementation with the appropriate amino acid or nucleobase. When assessedin vivoin a mouse model,E. coli83972carABand 83972argCshowed a significantly reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metEand 83972ilvCdid not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABUE. coliin human urine.


2005 ◽  
Vol 49 (6) ◽  
pp. 2343-2351 ◽  
Author(s):  
Patricia Komp Lindgren ◽  
Linda L. Marcusson ◽  
Dorthe Sandvang ◽  
Niels Frimodt-Møller ◽  
Diarmaid Hughes

ABSTRACT Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-TolC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 170 ◽  
Author(s):  
Ashok Chockalingam ◽  
Sharron Stewart ◽  
Lin Xu ◽  
Adarsh Gandhi ◽  
Murali K. Matta ◽  
...  

Urinary tract infections (UTI) are common worldwide and are becoming increasingly difficult to treat because of the development of antibiotic resistance. Immunocompetent murine models of human UTI have been used to study pathogenesis and treatment but not for investigating resistance development after treatment with antibiotics. In this study, intravesical inoculation of uropathogenic Escherichia coli CFT073 in immunocompetent Balb/c mice was used as a model of human UTI. The value of the model in investigating antibiotic exposure on in vivo emergence of antibiotic resistance was examined. Experimentally infected mice were treated with 20 or 200 mg/kg ampicillin, 5 or 50 mg/kg ciprofloxacin, or 100 or 1000 mg/kg of fosfomycin. Ampicillin and ciprofloxacin were given twice daily at 8 h intervals, and fosfomycin was given once daily. Antibiotic treatment began 24 h after bacterial inoculation and ended after 72 h following the initial treatment. Although minimum inhibitory concentrations (MIC) for the experimental strain of E. coli were exceeded at peak concentrations in tissues and consistently in urine, low levels of bacteria persisted in tissues in all experiments. E. coli from bladder tissue, kidney, and urine grew on plates containing 1× MIC of antibiotic, but none grew at 3× MIC. This model is not suitable for studying emergent resistance but might serve to examine bacterial persistence.


2014 ◽  
Vol 82 (4) ◽  
pp. 1572-1578 ◽  
Author(s):  
Karen L. Nielsen ◽  
Pia Dynesen ◽  
Preben Larsen ◽  
Lotte Jakobsen ◽  
Paal S. Andersen ◽  
...  

ABSTRACTCathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicatedEscherichia coliurinary tract infections (UTIs). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 andin vivovirulence. Forty-seven UTI patients and 50 controls who had never had a UTI were included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecalE. coliclones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D).In vivovirulence was investigated in the murine UTI model by use of selected fecal isolates from patients and controls. On average, UTI patients had significantly more LL-37 in urine during infection than postinfection, and patient LL-37 levels postinfection were significantly lower than those of controls. hBD-1 showed similar urine levels for UTI patients and controls. FecalE. coliisolates from controls had higher LL-37 susceptibility than fecal and UTIE. coliisolates from UTI patients.In vivostudies showed a high level of virulence of fecalE. coliisolates from both patients and controls and showed no difference in virulence correlated with the LL-37 MIC level. The results indicate that the concentration of LL-37 in the urinary tract and low susceptibility to LL-37 may increase the likelihood of UTI in a complex interplay between host and pathogen attributes.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Valerie S. Forsyth ◽  
Chelsie E. Armbruster ◽  
Sara N. Smith ◽  
Ali Pirani ◽  
A. Cody Springman ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenicE. coli(ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than otherE. coliisolates and survive in that niche. To date, there has not been a reliable method available to measure their growth ratein vivo. Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robustin vivo, matching or exceedingin vitrogrowth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth ratesin vivoat 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR,E. coliin urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth ratesin vivoand resistance to the innate immune response appear to be critical phenotypes of UPEC strains.IMPORTANCEUropathogenicEscherichia coli(UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized byE. colito colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measurein vivogrowth rates of other bacterial pathogens during host colonization.


Sign in / Sign up

Export Citation Format

Share Document