scholarly journals Identification of Legionella pneumophila-Specific Genes by Genomic Subtractive Hybridization with Legionella micdadei and Identification of lpnE, a Gene Required for Efficient Host Cell Entry

2006 ◽  
Vol 74 (3) ◽  
pp. 1683-1691 ◽  
Author(s):  
Hayley J. Newton ◽  
Fiona M. Sansom ◽  
Vicki Bennett-Wood ◽  
Elizabeth L. Hartland

ABSTRACT Legionella pneumophila is a ubiquitous environmental organism and a facultative intracellular pathogen of humans. To identify genes that may contribute to the virulence of L. pneumophila, we performed genomic subtractive hybridization between L. pneumophila serogroup 1 strain 02/41 and L. micdadei strain 02/42. A total of 144 L. pneumophila-specific clones were sequenced, revealing 151 genes that were absent in L. micdadei strain 02/42. Low-stringency Southern hybridization was used to determine the distribution of 41 sequences, representing 40 open reading frames (ORFs) with a range of putative functions among L. pneumophila isolates of various serogroups as well as strains of Legionella longbeachae, L. micdadei, Legionella gormanii, and Legionella jordanis. Twelve predicted ORFs were L. pneumophila specific, including the gene encoding the dot/icm effector, lepB, as well as several genes predicted to play a role in lipopolysaccharide biosynthesis and cell wall synthesis and several sequences with similarity to virulence-associated determinants. A further nine predicted ORFs were in all L. pneumophila serotypes tested and an isolate of L. gormanii. These included icmD, the 5′ end of a pilMNOPQ locus, and two genes known to be upregulated during growth within macrophages, cadA2 and ceaA. Disruption of an L. pneumophila-specific gene (lpg2222 locus tag) encoding a putative protein with eight tetratricopeptide repeats resulted in reduced entry into the macrophage-like cell line, THP-1, and the type II alveolar epithelial cell line, A549. The gene was subsequently renamed lpnE, for “L. pneumophila entry.” In summary, this investigation has revealed important genetic differences between L. pneumophila and other Legionella species that may contribute to the phenotypic and clinical differences observed within this genus.

1993 ◽  
Vol 19 (5) ◽  
pp. 603-616 ◽  
Author(s):  
Terence L. Zach ◽  
Vicki A. Herrman ◽  
Laura D. Hill ◽  
M. Patricia Leuschen

2004 ◽  
Vol 121 (6) ◽  
Author(s):  
Roland Koslowski ◽  
Kathrin Barth ◽  
Antje Augstein ◽  
Thomas Tschernig ◽  
Gerhard Bargsten ◽  
...  

FEBS Letters ◽  
1996 ◽  
Vol 397 (2-3) ◽  
pp. 263-268 ◽  
Author(s):  
Wolfgang Schobersberger ◽  
Georg Hoffmann ◽  
Petra Hobisch-Hagen ◽  
Günther Böck ◽  
Harald Völkl ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e76036 ◽  
Author(s):  
Feng Su ◽  
Xin Liu ◽  
Guanghui Liu ◽  
Yuan Yu ◽  
Yongsheng Wang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Daniel I. Sullivan ◽  
Mao Jiang ◽  
Angela M. Hinchie ◽  
Mark G. Roth ◽  
Harinath Bahudhanapati ◽  
...  

Cellular senescence due to telomere dysfunction has been hypothesized to play a role in age-associated diseases including idiopathic pulmonary fibrosis (IPF). It has been postulated that paracrine mediators originating from senescent alveolar epithelia signal to surrounding mesenchymal cells and contribute to disease pathogenesis. However, murine models of telomere-induced alveolar epithelial senescence fail to display the canonical senescence-associated secretory phenotype (SASP) that is observed in senescent human cells. In an effort to understand human-specific responses to telomere dysfunction, we modeled telomere dysfunction-induced senescence in a human alveolar epithelial cell line. We hypothesized that this system would enable us to probe for differences in transcriptional and proteomic senescence pathways in vitro and to identify novel secreted protein (secretome) changes that potentially contribute to the pathogenesis of IPF. Following induction of telomere dysfunction, a robust senescence phenotype was observed. RNA-seq analysis of the senescent cells revealed the SASP and comparisons to previous murine data highlighted differences in response to telomere dysfunction. We conducted a proteomic analysis of the senescent cells using a novel biotin ligase capable of labeling secreted proteins. Candidate biomarkers selected from our transcriptional and secretome data were then evaluated in IPF and control patient plasma. Four novel proteins were found to be differentially expressed between the patient groups: stanniocalcin-1, contactin-1, tenascin C, and total inhibin. Our data show that human telomere-induced, alveolar epithelial senescence results in a transcriptional SASP that is distinct from that seen in analogous murine cells. Our findings suggest that studies in animal models should be carefully validated given the possibility of species-specific responses to telomere dysfunction. We also describe a pragmatic approach for the study of the consequences of telomere-induced alveolar epithelial cell senescence in humans.


2005 ◽  
Vol 73 (7) ◽  
pp. 4272-4280 ◽  
Author(s):  
Bin Chang ◽  
Fumiaki Kura ◽  
Junko Amemura-Maekawa ◽  
Nobuo Koizumi ◽  
Haruo Watanabe

ABSTRACT Legionella pneumophila is an intracellular bacterium, and its successful parasitism in host cells involves two reciprocal phases: transmission and intracellular replication. In this study, we sought genes that are involved in virulence by screening a genomic DNA library of an L. pneumophila strain, 80-045, with convalescent-phase sera of Legionnaires' disease patients. Three antigens that reacted exclusively with the convalescent-phase sera were isolated. One of them, which shared homology with an integrin analogue of Saccharomyces cerevisiae, was named L. pneumophila adhesion molecule homologous with integrin analogue of S. cerevisiae (LaiA). The laiA gene product was involved in L. pneumophila adhesion to and invasion of the human lung alveolar epithelial cell line A549 during in vitro coculture. However, its presence did not affect multiplication of L. pneumophila within a U937 human macrophage cell line. Furthermore, after intranasal infection of A/J mice, the laiA mutant was eliminated from lungs and caused reduced mortality compared to the wild isolate. Thus, we conclude that the laiA gene encodes a virulence factor that is involved in transmission of L. pneumophila 80-045 and may play a role in Legionnaires' disease in humans.


Lung ◽  
2016 ◽  
Vol 194 (6) ◽  
pp. 923-930 ◽  
Author(s):  
Masashi Kawami ◽  
Rika Harabayashi ◽  
Mioka Miyamoto ◽  
Risako Harada ◽  
Ryoko Yumoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document