scholarly journals Activation and Repression at the Escherichia coli ynfEFGHI Operon Promoter

2009 ◽  
Vol 191 (9) ◽  
pp. 3172-3176 ◽  
Author(s):  
Meng Xu ◽  
Stephen J. W. Busby ◽  
Douglas F. Browning

ABSTRACT Induction of the Escherichia coli K-12 ynfEFGHI operon in response to anaerobiosis is repressed by nitrate ions. In this study, we show that the global transcription factor FNR is a class II activator at the ynfEFGHI promoter and that NarL represses activation by binding to a single target that overlaps the promoter −10 element. Electromobility shift assays show that NarL does not prevent RNA polymerase binding and suggest that repression may involve a quaternary NarL-FNR-RNA polymerase-promoter complex.

Microbiology ◽  
1999 ◽  
Vol 145 (11) ◽  
pp. 3081-3088 ◽  
Author(s):  
Mingli Hsieh ◽  
Hsiu-Mei Hsu ◽  
Shiow-Fen Hwang ◽  
Feng-Chen Wen ◽  
Ju-Shan Yu ◽  
...  

1989 ◽  
Vol 9 (1) ◽  
pp. 342-344
Author(s):  
M W Van Dyke ◽  
M Sawadogo ◽  
R G Roeder

Commitment of a TATA box-driven class II gene to transcription requires binding of only one transcription factor, TFIID. Additional factors (TFIIB, TFIIE, and RNA polymerase II) do not remain associated with the TFIID-promoter complex during the course of transcription. This indicates that there are two intermediates along the transcription reaction pathway which may be potential targets for the regulation of gene expression.


1989 ◽  
Vol 9 (1) ◽  
pp. 342-344 ◽  
Author(s):  
M W Van Dyke ◽  
M Sawadogo ◽  
R G Roeder

Commitment of a TATA box-driven class II gene to transcription requires binding of only one transcription factor, TFIID. Additional factors (TFIIB, TFIIE, and RNA polymerase II) do not remain associated with the TFIID-promoter complex during the course of transcription. This indicates that there are two intermediates along the transcription reaction pathway which may be potential targets for the regulation of gene expression.


2015 ◽  
Vol 43 (10) ◽  
pp. 5249-5262 ◽  
Author(s):  
Nicola Doniselli ◽  
Piere Rodriguez-Aliaga ◽  
Davide Amidani ◽  
Jorge A. Bardales ◽  
Carlos Bustamante ◽  
...  

Gene ◽  
1984 ◽  
Vol 27 (1) ◽  
pp. 121-123 ◽  
Author(s):  
Paul A. Manning ◽  
Giovanna Morelli ◽  
Claudine Fisseau

2021 ◽  
Author(s):  
Helen Camakaris ◽  
Ji Yang ◽  
Tadashi Fujii ◽  
James Pittard

A novel selection was developed for RpoA α-CTD mutants altered in activation by the TyrR regulatory protein of E. coli K-12. This allowed the identification of an aspartate to asparagine substitution in residue 250 (DN250) as an Act - mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and substitutions DR250, RE310 and RD310 were all shown to be defective in activation. None of these mutations caused defects in UP regulation. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. TyrR Mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77 and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act - tyrR mutants were isolated in an rpoA + strain, adding positions R77, D97, K101, D118, R119, R121 and E141 to known residues, S95 and D103, and defining the ‘activation patch’ on the NTD of TyrR. These results support a model for activation of TyrR-regulated genes where the ‘activation patch’ on the TyrR NTD interacts with the ‘TyrR-specific patch’ on the αCTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed, and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants, as Activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene TyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence, and important plant interactions.


Sign in / Sign up

Export Citation Format

Share Document