scholarly journals Major Tom to Ground Control: How Lipoproteins Communicate Extracytoplasmic Stress to the Decision Center of the Cell

2017 ◽  
Vol 199 (21) ◽  
Author(s):  
Géraldine Laloux ◽  
Jean-François Collet

ABSTRACT The envelope of bacteria is a complex multilayered shield that ensures multiple essential functions, including protecting the cell from external assaults. Hence, bacterial cells have evolved intricate mechanisms called envelope stress response systems (ESRS) to monitor all kinds of perturbations affecting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In the model bacterium Escherichia coli, several ESRS are built around a two-component system, in which envelope stress triggers a phosphotransfer between a sensor protein in the inner membrane of the envelope and a response regulator in the cytoplasm. In this review, we focus on two major ESRS in E. coli, the Rcs and Cpx pathways, in which additional proteins not directly involved in the phosphotransfer modulate signal transduction. Both the Rcs and Cpx systems can be turned on by a lipoprotein anchored in the outer membrane, RcsF and NlpE, respectively, providing a molecular connection between the most exterior layer of the envelope and the ground control center in the cytoplasm. Here, we review how these two lipoproteins, which share a striking set of features while being distinct in several aspects, act as sentinels at the front line of the bacterium by sensing and transducing stress to the downstream components of the Rcs and Cpx systems.

2015 ◽  
Vol 83 (4) ◽  
pp. 1451-1457 ◽  
Author(s):  
Lejla Imamovic ◽  
Alexandre Martínez-Castillo ◽  
Carmen Benavides ◽  
Maite Muniesa

Infection and lysogenic conversion with Shiga toxin-encoding bacteriophages (Stx phages) drive the emergence of new Shiga toxin-producingEscherichia colistrains. Phage attachment to the bacterial surface is the first stage of phage infection. Envelope perturbation causes activation of envelope stress responses in bacterial cells. Although many external factors are known to activate envelope stress responses, the role of these responses in the phage-bacterium interaction remains unexplored. Here, we investigate the link between three envelope signaling systems inE. coli(RcsBC, CpxAR, and BaeSR) and Stx2 phage infection by determining the success of bacterial lysogenic conversion. For this purpose,E. coliDH5α wild-type (WT) and mutant strains lacking RcsBC, CpxAR, or BaeSR signaling systems were incubated with a recombinant Stx2 phage (933W). Notably, the number of lysogens obtained with the BaeSR mutant was 5 log10units higher than with the WT, and the same differences were observed when using 7 different Stx2 phages. To assess whether the membrane receptor used by Stx phages, BamA, was involved in the differences observed,bamAgene expression was monitored by reverse transcription-quantitative PCR (RT-qPCR) in all host strains. A 4-fold-higherbamAexpression level was observed in the BaeSR mutant than in the WT strain, suggesting that differential expression of the receptor used by Stx phages accounted for the increase in the number of lysogenization events. Establishing the link between the role of stress responses and phage infection has important implications for understanding the factors affecting lysogenic conversion, which drives the emergence of new pathogenic clones.


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Sathi Mallick ◽  
Shanti Kiran ◽  
Tapas Kumar Maiti ◽  
Anindya S. Ghosh

Escherichia coli low-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of Escherichia coli LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation. Therefore, this study includes the assessment of physiological characteristics of E. coli CS109 LMM PBP deletion mutants to address biofilm formation abilities, viability and surface adhesion. Finally, EPS from parent CS109 and its ΔPBP4 and ΔPBP5 mutants were purified and analysed for sugars present. Deletions of LMM PBP reduced biofilm formation, bacterial adhesion and their viability in biofilms. Deletions also diminished EPS production by ΔPBP4 and ΔPBP5 mutants, purification of which suggested an increased overall negative charge compared with their parent. Also, EPS analyses from both mutants revealed the appearance of an unusual sugar, xylose, that was absent in CS109. Accordingly, the reason for reduced biofilm formation in LMM PBP mutants may be speculated as the subsequent production of xylitol and a hindrance in the standard flow of the pentose phosphate pathway.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Amin Zargar ◽  
David N. Quan ◽  
Karen K. Carter ◽  
Min Guo ◽  
Herman O. Sintim ◽  
...  

ABSTRACTThere have been many studies on the relationship between nonpathogenic bacteria and human epithelial cells; however, the bidirectional effects of the secretomes (secreted substances in which there is no direct bacterium-cell contact) have yet to be fully investigated. In this study, we use a transwell model to explore the transcriptomic effects of bacterial secretions from two different nonpathogenicEscherichia colistrains on the human colonic cell line HCT-8 using next-generation transcriptome sequencing (RNA-Seq).E. coliBL21 and W3110, while genetically very similar (99.1% homology), exhibit key phenotypic differences, including differences in their production of macromolecular structures (e.g., flagella and lipopolysaccharide) and in their secretion of metabolic byproducts (e.g., acetate) and signaling molecules (e.g., quorum-sensing autoinducer 2 [AI-2]). After analysis of differential epithelial responses to the respective secretomes, this study shows for the first time that a nonpathogenic bacterial secretome activates the NF-κB-mediated cytokine-cytokine receptor pathways while also upregulating negative-feedback components, including the NOD-like signaling pathway. Because of AI-2's relevance as a bacterium-bacterium signaling molecule and the differences in its secretion rates between these strains, we investigated its role in HCT-8 cells. We found that the expression of the inflammatory cytokine interleukin 8 (IL-8) responded to AI-2 with a pattern of rapid upregulation before subsequent downregulation after 24 h. Collectively, these data demonstrate that secreted products from nonpathogenic bacteria stimulate the transcription of immune-related biological pathways, followed by the upregulation of negative-feedback elements that may serve to temper the inflammatory response.IMPORTANCEThe symbiotic relationship between the microbiome and the host is important in the maintenance of human health. There is a growing need to further understand the nature of these relationships to aid in the development of homeostatic probiotics and also in the design of novel antimicrobial therapeutics. To our knowledge, this is the first global-transcriptome study of bacteria cocultured with human epithelial cells in a model to determine the transcriptional effects of epithelial cells in which epithelial and bacterial cells are allowed to “communicate” with each other only through diffusible small molecules and proteins. By beginning to demarcate the direct and indirect effects of bacteria on the gastrointestinal (GI) tract, two-way interkingdom communication can potentially be mediated between host and microbe.


2015 ◽  
Vol 197 (14) ◽  
pp. 2316-2324 ◽  
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Yoshinori Akiyama

ABSTRACTσE, an alternative σ factor that governs a major signaling pathway in envelope stress responses in Gram-negative bacteria, is essential for growth ofEscherichia colinot only under stressful conditions, such as elevated temperature, but also under normal laboratory conditions. A mutational inactivation of thehicBgene has been reported to suppress the lethality caused by the loss of σE.hicBencodes the antitoxin of the HicA-HicB toxin-antitoxin (TA) system; overexpression of the HicA toxin, which exhibits mRNA interferase activity, causes cleavage of mRNAs and an arrest of cell growth, while simultaneous expression of HicB neutralizes the toxic effects of overproduced HicA. To date, however, how the loss of HicB rescues the cell lethality in the absence of σEand, more specifically, whether HicA is involved in this process remain unknown. Here we showed that simultaneous disruption ofhicAabolished suppression of the σEessentiality in the absence ofhicB, while ectopic expression of wild-type HicA, but not that of its mutant forms without mRNA interferase activity, restored the suppression. Furthermore, HicA and two other mRNA interferase toxins, HigB and YafQ, suppressed the σEessentiality even in the presence of chromosomally encoded cognate antitoxins when these toxins were overexpressed individually. Interestingly, when the growth media were supplemented with low levels of antibiotics that are known to activate toxins,E. colicells with no suppressor mutations grew independently of σE. Taken together, our results indicate that the activation of TA system toxins can suppress the σEessentiality and affect the extracytoplasmic stress responses.IMPORTANCEσEis an alternative σ factor involved in extracytoplasmic stress responses. Unlike other alternative σ factors, σEis indispensable for the survival ofE. colieven under unstressed conditions, although the exact reason for its essentiality remains unknown. Toxin-antitoxin (TA) systems are widely distributed in prokaryotes and are composed of two adjacent genes, encoding a toxin that exerts harmful effects on the toxin-producing bacterium itself and an antitoxin that neutralizes the cognate toxin. Curiously, it is known that inactivation of an antitoxin rescues the σEessentiality, suggesting a connection between TA systems and σEfunction. We demonstrate here that toxin activation is necessary for this rescue and suggest the possible involvement of TA systems in extracytoplasmic stress responses.


2015 ◽  
Vol 83 (6) ◽  
pp. 2396-2408 ◽  
Author(s):  
Nicole Acosta ◽  
Stefan Pukatzki ◽  
Tracy L. Raivio

Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway inVibrio choleraeEl Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of thecrpgene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production.


2013 ◽  
Vol 79 (24) ◽  
pp. 7770-7779 ◽  
Author(s):  
Bianca Audrain ◽  
Lionel Ferrières ◽  
Amira Zairi ◽  
Guillaume Soubigou ◽  
Curtis Dobson ◽  
...  

ABSTRACTAntimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response ofEscherichia coliupon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σEenvelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4dermaseptin, also activate severalE. colienvelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes toE. colitolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show thatE. colisenses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway toE. colitolerance to antimicrobial peptides.


2012 ◽  
Vol 78 (11) ◽  
pp. 3905-3915 ◽  
Author(s):  
Wen Zhang ◽  
Joseph Hughes ◽  
Yongsheng Chen

ABSTRACTDespite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties ofEscherichia colicells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed thatE. colicells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treatedE. colicells was 120 nm, which is significantly lower (P< 0.01) than that of the untreated cells (approximately 400 nm). The spring constant of hematite-treatedE. colicells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential ofE. colicells, measured by dynamic light scattering (DLS), was shown to shift from −4 ± 2 mV to −27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials.


2011 ◽  
Vol 80 (2) ◽  
pp. 688-703 ◽  
Author(s):  
Jacqueline Njoroge ◽  
Vanessa Sperandio

ABSTRACTThe human pathogen enterohemorrhagicEscherichia coli(EHEC) O157:H7 has two histidine sensor kinases, QseC and QseE, which respond to the mammalian adrenergic hormones epinephrine and norepinephrine by increasing their autophosphorylation. Although QseC and QseE are present in nonpathogenic strains ofE. coli, EHEC exploits these kinases for virulence regulation. To further investigate the full extent of epinephrine and its sensors' impact on EHEC virulence, we performed transcriptomic and phenotypic analyses of single and double deletions ofqseCandqseEgenes in the absence or presence of epinephrine. We showed that in EHEC, epinephrine sensing seems to occur primarily through QseC and QseE. We also observed that QseC and QseE regulate expression of the locus of enterocyte effacement (LEE) genes positively and negatively, respectively. LEE activation, which is required for the formation of the characteristic attaching and effacing (A/E) lesions by EHEC on epithelial cells, is epinephrine dependent. Regulation of the LEE and the non-LEE-contained virulence factor genenleAby QseE is indirect, through transcription inhibition of the RcsB response regulator. Finally, we show that coincubation of HeLa cells with epinephrine increases EHEC infectivity in a QseC- and QseE-dependent manner. These results genetically and phenotypically map the contributions of the two adrenergic sensors QseC and QseE to EHEC pathogenesis.


2017 ◽  
Vol 200 (1) ◽  
Author(s):  
Sasikiran Pasupuleti ◽  
Nitesh Sule ◽  
Michael D. Manson ◽  
Arul Jayaraman

ABSTRACTThe detection of norepinephrine (NE) as a chemoattractant byEscherichia colistrain K-12 requires the combined action of the TynA monoamine oxidase and the FeaB aromatic aldehyde dehydrogenase. The role of these enzymes is to convert NE into 3,4-dihydroxymandelic acid (DHMA), which is a potent chemoattractant sensed by the Tsr chemoreceptor. These two enzymes must be induced by prior exposure to NE, and cells that are exposed to NE for the first time initially show minimal chemotaxis toward it. The induction of TynA and FeaB requires the QseC quorum-sensing histidine kinase, and the signaling cascade requires new protein synthesis. Here, we demonstrate that the cognate response regulator for QseC, the transcription factor QseB, is also required for induction. The related quorum-sensing kinase QseE appears not to be part of the signaling pathway, but its cognate response regulator, QseF, which is also a substrate for phosphotransfer from QseC, plays a nonessential role. The promoter of thefeaRgene, which encodes a transcription factor that has been shown to be essential for the expression oftynAandfeaB, has two predicted QseB-binding sites. One of these sites appears to be in an appropriate position to stimulate transcription from the P1promoter of thefeaRgene. This study unites two well-known pathways: one for expression of genes regulated by catecholamines (QseBC) and one for expression of genes required for metabolism of aromatic amines (FeaR, TynA, and FeaB). This cross talk allowsE. colito convert the host-derived and chemotactically inert NE into the potent bacterial chemoattractant DHMA.IMPORTANCEThe chemotaxis ofE. coliK-12 to norepinephrine (NE) requires the conversion of NE to 3,4-dihydroxymandleic acid (DHMA), and DHMA is both an attractant and inducer of virulence gene expression for a pathogenic enterohemorrhagicE. coli(EHEC) strain. The induction of virulence by DHMA and NE requires QseC. The results described here show that the cognate response regulator for QseC, QseB, is also required for conversion of NE into DHMA. Production of DHMA requires induction of a pathway involved in the metabolism of aromatic amines. Thus, the QseBC sensory system provides a direct link between virulence and chemotaxis, suggesting that chemotaxis to host signaling molecules may require that those molecules are first metabolized by bacterial enzymes to generate the actual chemoattractant.


2016 ◽  
Vol 82 (15) ◽  
pp. 4663-4672 ◽  
Author(s):  
Rui Xue ◽  
Yalong Liu ◽  
Qingsong Zhang ◽  
Congcong Liang ◽  
Huazhen Qin ◽  
...  

ABSTRACTTo verify the interaction mechanism between sericin andEscherichia coli, especially the morphological and structural changes in the bacterial cells, the antimicrobial activity of sericin againstE. colias a model for Gram-negative bacteria was investigated. The antibacterial activity of sericin onE. coliand the interaction mechanism were investigated in this study by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with sericin. The changes in morphology and cellular compositions of bacterial cells treated with sericin were observed by an inverted fluorescence microscope, scanning electron microscopy, and transmission electron microscopy. Changes in electrical conductivity, total sugar concentration of the broth for the bacteria, and protein expression of the bacteria were determined to investigate the permeability of the cell membrane. A sericin-based hydrogel was prepared for anin vivostudy of wound dressing. The results showed that the antibacterial activity of the hydrogel increased with the increase in the concentration of sericin from 10 g/liter to 40 g/liter. The introduction of sericin induces membrane blebbing ofE. colicells caused by antibiotic action on the cell membrane. The cytoplasm shrinkage phenomenon was accompanied by blurring of the membrane wall boundaries. WhenE. colicells were treated with sericin, release of intracellular components quickly increased. The electrical conductivity assay indicated that the charged ions are reduced after exposure to sericin so that the integrity of the cell membrane is weakened and metabolism is blocked. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that sericin hinders the expression of bacterial protein. Sericin may damage the integrity of the bacterial cell membrane, thereby eventually inhibiting the growth and reproduction ofE. coli. Compared to sterile gauze, the sericin-based hydrogel promoted fibroblast cell proliferation and accelerated the formation of granulation tissues and neovessels.IMPORTANCEThe specific relationship and interaction mechanism between sericin andE. colicells were investigated and elucidated. The results show that after 12 h of treatment, sericin molecules induce membrane blebbing ofE. colicells, and the bacteria show decreases in liquidity and permeability of biological membrane, resulting in alterations in the conductivity of the culture medium and the integrity of the outer membrane. The subsequentin vivoresults demonstrate that the sericin-poly(N-isopropylacrylamide-N,N′-methylene-bis-acrylamide [NIPAm-MBA]) hydrogel accelerated wound healing compared to that with sterile gauze, which is a beneficial result for future applications in clinical medicine and the textile, food, and coating industries.


Sign in / Sign up

Export Citation Format

Share Document