The sensor histidine kinase ArlS is necessary for Staphylococcus aureus to activate ArlR in response to nutrient availability

2021 ◽  
Author(s):  
Paola K. Párraga Solórzano ◽  
Angela C. Shupe ◽  
Thomas E. Kehl-Fie

Staphylococcus aureus is a versatile opportunistic pathogen whose success is driven by its ability to adapt to diverse environments and host-imposed stresses. Two-component signal transduction systems, such as ArlRS, often mediate these adaptations. Loss of ArlRS or the response regulator ArlR alone impairs the ability of S. aureus to respond to host-imposed manganese starvation and glucose limitation. As sensor histidine kinases and response regulators frequently work as pairs, it has been assumed that ArlS senses and activates ArlR in response to these stimuli. However, recent work suggests that the sensor histidine kinase GraS can also activate ArlR, calling the contribution of ArlS in responding to manganese and glucose availability into question. The current studies reveal that ArlS is necessary to activate ArlR in response to manganese sequestration by the host immune effector calprotectin and glucose limitation. Although the loss of ArlS does not completely eliminate ArlR activity, this response regulator is no longer responsive to manganese or glucose availability in the absence of its cognate histidine kinase. Despite the residual activity of ArlR in the absence of ArlS, ArlR phosphorylation by ArlS is required for S. aureus to resist calprotectin-imposed metal starvation. Cumulatively, these findings contribute to the understanding of S. aureus signaling transduction in response to nutritional immunity and support the previous observation that indicates ArlRS is activated by a common signal derived from host-imposed manganese and glucose limitation. IMPORTANCE The ability of pathogens, including Staphylococcus aureus , to sense and adapt to diverse environments partially relies on two-component systems, such as ArlRS. Recent work revealed that the response regulator ArlR can be cross-activated by the sensor histidine kinase GraS, rendering the role of its cognate partner, ArlS, in response to manganese and glucose limitation uncertain. This study reveals that ArlS is necessary for the activation of ArlR in response to calprotectin and glucose limitation. Although a low level of ArlR activity remains in the absence of ArlS, ArlS phosphotransfer to ArlR is required for S. aureus to overcome calprotectin-induced nutritional stress. Collectively, this study provides fundamental information to understand how ArlRS mediates staphylococcal adaptation during infection.

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 252 ◽  
Author(s):  
Uzma Muzamal ◽  
Daniel Gomez ◽  
Fenika Kapadia ◽  
Dasantila Golemi-Kotra

The response to cationic antimicrobial peptides (CAMPs) in Staphylococcus aureus relies on a two-component system (TCS), GraSR, an auxiliary protein GraX and an ATP-binding cassette (ABC) transporter, VraF/G. To understand the signal transduction mechanism by GraSR, we investigated the kinase activity of the cytoplasmic domain of histidine kinase GraS and the interaction with its cognate response regulator GraR. We also investigated interactions among the auxiliary protein GraX, GraS/R and the ATPase protein of the ABC transporter, VraF. We found that GraS lacks autophosphorylation activity, unlike a similar histidine kinase, BceS, of Bacillus subtilis. In addition, the interaction between GraS and GraR is very weak in comparison to the stronger interaction observed between BceS and its conjugated response regulator, BceR, suggesting that CAMP signaling may not flow directly from GraS to GraR. We found that the auxiliary protein GraX interacts with VraF and GraR, and requires the histidine phosphotransfer and dimerization domain of GraS to interact with this protein. Further, VraF requires the GraS region that connects the membrane-bound domain with the cytoplasmic domain of this protein for interaction with GraS. The interactions of GraX with GraS/R and VraF indicate that GraX may serve as a scaffold to bring these proteins in close proximity to GraS, plausibly to facilitate activation of GraS to ultimately transduce the signal to GraR.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 252 ◽  
Author(s):  
Uzma Muzamal ◽  
Daniel Gomez ◽  
Fenika Kapadia ◽  
Dasantila Golemi-Kotra

The response to cationic antimicrobial peptides (CAMPs) in Staphylococcus aureus relies on a two-component system (TCS), GraSR, an auxiliary protein GraX and an ATP-binding cassette (ABC) transporter, VraF/G. To understand the signal transduction mechanism by GraSR, we investigated the kinase activity of the cytoplasmic domain of histidine kinase GraS and the interaction with its cognate response regulator GraR. We also investigated interactions among the auxiliary protein GraX, GraS/R and the ATPase protein of the ABC transporter, VraF. We found that GraS lacks autophosphorylation activity, unlike a similar histidine kinase, BceS, of Bacillus subtilis. In addition, the interaction between GraS and GraR is very weak in comparison to the stronger interaction observed between BceS and its conjugated response regulator, BceR, suggesting that CAMP signaling may not flow directly from GraS to GraR. We found that the auxiliary protein GraX interacts with VraF and GraR, and requires the histidine phosphotransfer and dimerization domain of GraS to interact with this protein. Further, VraF requires the GraS region that connects the membrane-bound domain with the cytoplasmic domain of this protein for interaction with GraS. The interactions of GraX with GraS/R and VraF indicate that GraX may serve as a scaffold to bring these proteins in close proximity to GraS, plausibly to facilitate activation of GraS to ultimately transduce the signal to GraR.


2020 ◽  
Author(s):  
Alexis Proutière ◽  
Bruno Périchon ◽  
Laurence du Merle ◽  
Hugo Varet ◽  
Patrick Trieu-Cuot ◽  
...  

AbstractBacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus (Sgg) was recently shown to outcompete commensal enterococci of the murine microbiota in tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. We here identified 4 genes involved in the regulatory control of gallocin in Sgg UCN34, respectively encoding a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-aa response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is highly specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30-bp was found in all promoter regions regulated by BlpR and BlpS. EMSA assays showed direct and specific binding of the two gallocin regulators to various regulated promoter regions in a dose dependent manner. Gallocin expression appears tightly controlled in Sgg by quorum sensing and antagonistic activity of 2 LytTR-containing proteins.SignificanceStreptococcus gallolyticus (Sgg), formely known as S. bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. We previously showed that Sgg produces a bacteriocin, termed gallocin, enabling colonization of the colon in tumoral conditions by outcompeting commensal members of the gut. Here we characterized a 4-component regulatory system that regulates gallocin transcription, which is activated by the response regulator BlpR. BlpR itself is activated by a quorum sensing peptide GSP and a dedicated histidine kinase BlpH. Interestingly, BlpS, a small DNA-binding protein co-transcribed with BlpR was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent Sgg colon colonization in tumoral conditions.


2009 ◽  
Vol 76 (4) ◽  
pp. 1224-1231 ◽  
Author(s):  
Kati Geszvain ◽  
Bradley M. Tebo

ABSTRACT Bacterial manganese(II) oxidation has a profound impact on the biogeochemical cycling of Mn and the availability of the trace metals adsorbed to the surfaces of solid Mn(III, IV) oxides. The Mn(II) oxidase enzyme was tentatively identified in Pseudomonas putida GB-1 via transposon mutagenesis: the mutant strain GB-1-007, which fails to oxidize Mn(II), harbors a transposon insertion in the gene cumA. cumA encodes a putative multicopper oxidase (MCO), a class of enzymes implicated in Mn(II) oxidation in other bacterial species. However, we show here that an in-frame deletion of cumA did not affect Mn(II) oxidation. Through complementation analysis of the oxidation defect in GB-1-007 with a cosmid library and subsequent sequencing of candidate genes we show the causative mutation to be a frameshift within the mnxS1 gene that encodes a putative sensor histidine kinase. The frameshift mutation results in a truncated protein lacking the kinase domain. Multicopy expression of mnxS1 restored Mn(II) oxidation to GB-1-007 and in-frame deletion of mnxS1 resulted in a loss of oxidation in the wild-type strain. These results clearly demonstrated that the oxidation defect of GB-1-007 is due to disruption of mnxS1, not cumA::Tn5, and that CumA is not the Mn(II) oxidase. mnxS1 is located upstream of a second sensor histidine kinase gene, mnxS2, and a response regulator gene, mnxR. In-frame deletions of each of these genes also led to the loss of Mn(II) oxidation. Therefore, we conclude that the MnxS1/MnxS2/MnxR two-component regulatory pathway is essential for Mn(II) oxidation in P. putida GB-1.


2021 ◽  
Vol 9 (10) ◽  
pp. 2026
Author(s):  
Alexandra A. Guffey ◽  
Patrick J. Loll

Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field’s most pressing questions: How does VanS sense vancomycin?


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 398-412 ◽  
Author(s):  
Kassem Hamze ◽  
Daria Julkowska ◽  
Sabine Autret ◽  
Krzysztof Hinc ◽  
Krzysztofa Nagorska ◽  
...  

Highly branched dendritic swarming of B. subtilis on synthetic B-medium involves a developmental-like process that is absolutely dependent on flagella and surfactin secretion. In order to identify new swarming genes, we targeted the two-component ComPA signalling pathway and associated global regulators. In liquid cultures, the histidine kinase ComP, and the response regulator ComA, respond to secreted pheromones ComX and CSF (encoded by phrC) in order to control production of surfactin synthases and ComS (competence regulator). In this study, for what is believed to be the first time, we established that distinct early stages of dendritic swarming can be clearly defined, and that they are amenable to genetic analysis. In a mutational analysis producing several mutants with distinctive phenotypes, we were able to assign the genes sfp (activation of surfactin synthases), comA, abrB and codY (global regulators), hag (flagellin), mecA and yvzB (hag-like), and swrB (motility), to the different swarming stages. Surprisingly, mutations in genes comPX, comQ, comS, rapC and oppD, which are normally indispensable for import of CSF, had only modest effects, if any, on swarming and surfactin production. Therefore, during dendritic swarming, surfactin synthesis is apparently subject to novel regulation that is largely independent of the ComXP pathway; we discuss possible alternative mechanisms for driving srfABCD transcription. We showed that the phrC mutant, largely independent of any effect on surfactin production, was also, nevertheless, blocked early in swarming, forming stunted dendrites, with abnormal dendrite initiation morphology. In a mixed swarm co-inoculated with phrC sfp+ and phrC+ sfp (GFP), an apparently normal swarm was produced. In fact, while initiation of all dendrites was of the abnormal phrC type, these were predominantly populated by sfp cells, which migrated faster than the phrC cells. This and other results indicated a specific migration defect in the phrC mutant that could not be trans-complemented by CSF in a mixed swarm. CSF is the C-terminal pentapeptide of the surface-exposed PhrC pre-peptide and we propose that the residual PhrC 35 aa residue peptide anchored in the exterior of the cytoplasmic membrane has an apparently novel extracellular role in swarming.


2005 ◽  
Vol 390 (3) ◽  
pp. 769-776 ◽  
Author(s):  
Sarah Sanowar ◽  
Hervé Le Moual

Two-component signal-transduction systems are widespread in bacteria. They are usually composed of a transmembrane histidine kinase sensor and a cytoplasmic response regulator. The PhoP/PhoQ two-component system of Salmonella typhimurium contributes to virulence by co-ordinating the adaptation to low concentrations of environmental Mg2+. Limiting concentrations of extracellular Mg2+ activate the PhoP/PhoQ phosphorylation cascade modulating the transcription of PhoP-regulated genes. In contrast, high concentrations of extracellular Mg2+ stimulate the dephosphorylation of the response regulator PhoP by the PhoQ kinase sensor. In the present study, we report the purification and functional reconstitution of PhoQHis, a PhoQ variant with a C-terminal His tag, into Escherichia coli liposomes. The functionality of PhoQHis was essentially similar to that of PhoQ as shown in vivo and in vitro. Purified PhoQHis was inserted into liposomes in a unidirectional orientation, with the sensory domain facing the lumen and the catalytic domain facing the extraluminal environment. Reconstituted PhoQHis exhibited all the catalytic activities that have been described for histidine kinase sensors. Reconstituted PhoQHis was capable of autokinase activity when incubated in the presence of Mg2+-ATP. The phosphoryl group could be transferred from reconstituted PhoQHis to PhoP. Reconstituted PhoQHis catalysed the dephosphorylation of phospho-PhoP and this activity was stimulated by the addition of extraluminal ADP.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
J. Andrés Valderrama ◽  
Helena Gómez-Álvarez ◽  
Zaira Martín-Moldes ◽  
M. Álvaro Berbís ◽  
F. Javier Cañada ◽  
...  

ABSTRACTWe have identified and characterized the AccS multidomain sensor kinase that mediates the activation of the AccR master regulator involved in carbon catabolite repression (CCR) of the anaerobic catabolism of aromatic compounds inAzoarcussp. CIB. A truncated AccS protein that contains only the soluble C-terminal autokinase module (AccS′) accounts for the succinate-dependent CCR control. In vitroassays with purified AccS′ revealed its autophosphorylation, phosphotransfer from AccS′∼P to the Asp60 residue of AccR, and the phosphatase activity toward its phosphorylated response regulator, indicating that the equilibrium between the kinase and phosphatase activities of AccS′ may control the phosphorylation state of the AccR transcriptional regulator. Oxidized quinones, e.g., ubiquinone 0 and menadione, switched the AccS′ autokinase activity off, and three conserved Cys residues, which are not essential for catalysis, are involved in such inhibition. Thiol oxidation by quinones caused a change in the oligomeric state of the AccS′ dimer resulting in the formation of an inactive monomer. This thiol-based redox switch is tuned by the cellular energy state, which can change depending on the carbon source that the cells are using. This work expands the functional diversity of redox-sensitive sensor kinases, showing that they can control new bacterial processes such as CCR of the anaerobic catabolism of aromatic compounds. The AccSR two-component system is conserved in the genomes of some betaproteobacteria, where it might play a more general role in controlling the global metabolic state according to carbon availability.IMPORTANCETwo-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacteriumAzoarcussp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state.


2011 ◽  
Vol 79 (8) ◽  
pp. 3117-3130 ◽  
Author(s):  
Melissa J. Caimano ◽  
Melisha R. Kenedy ◽  
Toru Kairu ◽  
Daniel C. Desrosiers ◽  
Michael Harman ◽  
...  

ABSTRACTTwo-component systems (TCS) are principal mechanisms by which bacteria adapt to their surroundings.Borrelia burgdorferiencodes only two TCS. One is comprised of a histidine kinase, Hk2, and the response regulator Rrp2. While the contribution of Hk2 remains unclear, Rrp2 is part of a regulatory pathway involving the spirochete's alternate sigma factors, RpoN and RpoS. Genes within the Rrp2/RpoN/RpoS regulon function to promote tick transmission and early infection. The other TCS consists of a hybrid histidine kinase, Hk1, and the response regulator Rrp1. Hk1 is composed of two periplasmic sensor domains (D1 and D2), followed by conserved cytoplasmic histidine kinase core, REC, and Hpt domains. In addition to its REC domain, Rrp1 contains a GGDEF motif characteristic of diguanylate cyclases. To investigate the role of Hk1 during the enzootic cycle, we inactivated this gene in two virulent backgrounds. Extensive characterization of the resulting mutants revealed a dramatic phenotype whereby Hk1-deficient spirochetes are virulent in mice and able to migrate out of the bite site during feeding but are killed within the midgut following acquisition. We hypothesize that the phosphorelay between Hk1 and Rrp1 is initiated by the binding of feeding-specific ligand(s) to Hk1 sensor domain D1 and/or D2. Once activated, Rrp1 directs the synthesis of cyclic dimeric GMP (c-di-GMP), which, in turn, modulates the expression and/or activity of gene products required for survival within feeding ticks. In contrast to the Rrp2/RpoN/RpoS pathway, which is active only within feeding nymphs, the Hk1/Rrp1 TCS is essential for survival during both larval and nymphal blood meals.


2010 ◽  
Vol 192 (17) ◽  
pp. 4388-4394 ◽  
Author(s):  
Kyle J. Wayne ◽  
Lok-To Sham ◽  
Ho-Ching T. Tsui ◽  
Alina D. Gutu ◽  
Skye M. Barendt ◽  
...  

ABSTRACT The WalRK two-component regulatory system coordinates gene expression that maintains cell wall homeostasis and responds to antibiotic stress in low-GC Gram-positive bacteria. Phosphorylated WalR (VicR) of the major human respiratory pathogen Streptococcus pneumoniae (WalR Spn ) positively regulates transcription of several surface virulence genes and, most critically, pcsB, which encodes an essential cell division protein. Despite numerous studies of several species, little is known about the signals sensed by the WalK histidine kinase or the function of the WalJ ancillary protein encoded in the walRKSpn operon. To better understand the functions of the WalRKJ Spn proteins in S. pneumoniae, we performed experiments to determine their cellular localization and amounts. In contrast to WalK from Bacillus subtilis (WalK Bsu ), which is localized at division septa, immunofluorescence microscopy showed that WalK Spn is distributed throughout the cell periphery. WalJ Spn is also localized to the cell surface periphery, whereas WalR Spn was found to be localized in the cytoplasm around the nucleoid. In fractionation experiments, WalR Spn was recovered from the cytoplasmic fraction, while WalK Spn and the majority of WalJ Spn were recovered from the cell membrane fraction. This fractionation is consistent with the localization patterns observed. Lastly, we determined the cellular amounts of WalRKJ Spn by quantitative Western blotting. The WalR Spn response regulator is relatively abundant and present at levels of ≈6,200 monomers per cell, which are ≈14-fold greater than the amount of the WalK Spn histidine kinase, which is present at ≈460 dimers (920 monomers) per cell. We detected ≈1,200 monomers per cell of WalJ Spn ancillary protein, similar to the amount of WalK Spn .


Sign in / Sign up

Export Citation Format

Share Document