scholarly journals The Rhl Quorum Sensing System is at the Top of the Regulatory Hierarchy under Phosphate Limiting Conditions in Pseudomonas aeruginosa PAO1.

2020 ◽  
Author(s):  
Martín Paolo Soto-Aceves ◽  
Miguel Cocotl-Yañez ◽  
Luis Servín-González ◽  
Gloria Soberón-Chávez

Pseudomonas aeruginosa is a major nosocomial pathogen that presents high-level resistance to antibiotics. Its ability to cause infections relies on the production of multiple virulence factors. Quorum sensing (QS) regulates the expression of many of these virulence factors through three QS systems: Las, Rhl and PQS. The Las system positively regulates the other two systems, so it is the top of a hierarchized regulation. Nevertheless, clinical and environmental strains that lack a functional Las system have been isolated and surprisingly, some of them still have the ability to produce virulence factors and infect animal models, so it has been suggested that the hierarchy could be flexible under some conditions or atypical strains. Here we analyze the PAO1 type strain and its ΔlasR-derived mutant and report for the first time a growth condition (phosphate limitation) where LasR absence has no effect either on virulence factors production nor on the gene expression profile, in contrast to a condition of phosphate repletion where the LasR hierarchy is maintained. This work provides evidence on how the QS hierarchy can change from being strictly LasR-dependent to a LasR-independent RhlR-based hierarchy under phosphate limitation even in the PAO1 type strain. IMPORTANCE Pseudomonas aeruginosa is an important pathogen considered a priority for the development of new therapeutic strategies. An important approach to fight its infections relies on blocking quorum sensing. The Las system is the main regulator of the quorum sensing response, so many research efforts aim to block this system in order to suppress the entire response. In this work we show that LasR is dispensable in a phosphate-limited environment in the PAO1 type strain, which has been used to define of the quorum-sensing response hierarchy, and that in this condition RhlR is at the top of the regulation hierarchy. These results are highly significant since phosphate-limitation represents a similar environment to the one that P. aeruginosa faces when establishing infections.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Syed A. K. Shifat Ahmed ◽  
Michelle Rudden ◽  
Sabrina M. Elias ◽  
Thomas J. Smyth ◽  
Roger Marchant ◽  
...  

AbstractPseudomonas aeruginosa uses quorum sensing (QS) to modulate the expression of several virulence factors that enable it to establish severe infections. The QS system in P. aeruginosa is complex, intricate and is dominated by two main N-acyl-homoserine lactone circuits, LasRI and RhlRI. These two QS systems work in a hierarchical fashion with LasRI at the top, directly regulating RhlRI. Together these QS circuits regulate several virulence associated genes, metabolites, and enzymes in P. aeruginosa. Paradoxically, LasR mutants are frequently isolated from chronic P. aeruginosa infections, typically among cystic fibrosis (CF) patients. This suggests P. aeruginosa can undergo significant evolutionary pathoadaptation to persist in long term chronic infections. In contrast, mutations in the RhlRI system are less common. Here, we have isolated a clinical strain of P. aeruginosa from a CF patient that has deleted the transcriptional regulator RhlR entirely. Whole genome sequencing shows the rhlR locus is deleted in PA80 alongside a few non-synonymous mutations in virulence factors including protease lasA and rhamnolipid rhlA, rhlB, rhlC. Importantly we did not observe any mutations in the LasRI QS system. PA80 does not appear to have an accumulation of mutations typically associated with several hallmark pathoadaptive genes (i.e., mexT, mucA, algR, rpoN, exsS, ampR). Whole genome comparisons show that P. aeruginosa strain PA80 is closely related to the hypervirulent Liverpool epidemic strain (LES) LESB58. PA80 also contains several genomic islands (GI’s) encoding virulence and/or resistance determinants homologous to LESB58. To further understand the effect of these mutations in PA80 QS regulatory and virulence associated genes, we compared transcriptional expression of genes and phenotypic effects with isogenic mutants in the genetic reference strain PAO1. In PAO1, we show that deletion of rhlR has a much more significant impact on the expression of a wide range of virulence associated factors rather than deletion of lasR. In PA80, no QS regulatory genes were expressed, which we attribute to the inactivation of the RhlRI QS system by deletion of rhlR and mutation of rhlI. This study demonstrates that inactivation of the LasRI system does not impact RhlRI regulated virulence factors. PA80 has bypassed the common pathoadaptive mutations observed in LasR by targeting the RhlRI system. This suggests that RhlRI is a significant target for the long-term persistence of P. aeruginosa in chronic CF patients. This raises important questions in targeting QS systems for therapeutic interventions.


Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 712-723 ◽  
Author(s):  
Valérie Dekimpe ◽  
Eric Déziel

Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C4-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C12-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.


2008 ◽  
Vol 190 (18) ◽  
pp. 6217-6227 ◽  
Author(s):  
Haihua Liang ◽  
Lingling Li ◽  
Zhaolin Dong ◽  
Michael G. Surette ◽  
Kangmin Duan

ABSTRACT Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR ( p qsR-mediated P QS r egulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.


2021 ◽  
Vol 30 (2) ◽  
pp. 1-8
Author(s):  
Ahmad O. Rifai ◽  
Abeer M. Abd El-Aziz ◽  
Hany I. Kenawy

Background: Pseudomonas aeruginosa has developed different mechanisms of resistance against antibiotics and became one of the most life-threatening pathogens. Fighting against its virulence Factors are an alternative therapeutic target. Objective: This study was directed towards the investigation of anti-quorum sensing activity and inhibitory action on virulence factors of different agents including antibacterial agents to which Pseudomonas aeruginosa isolates are resistant and non-antibacterial agents. Methodology: Anti-quorum sensing activity of ceftriaxone, ceftazidime (CAZ), cefepime (FEP), vancomycin (VA), paracetamol (PA), and pheniramine maleate (PHE) investigated as well as their ability to reduce other virulence factors including protease, hemolysin, and pyocyanin production. Results: This study showed that 3rd and 4th generations cephalosporins could be used as anti-quorum sensing agents effectively in the treatment of Pseudomonas aeruginosa infections, however, vancomycin, paracetamol, and pheniramine maleate had no effect on inhibiting the studied virulence factors. Conclusion: From our study we conclude that although cephalosporins at the used concentrations did not show anti-pseudomonal activity they were effective as anti virulent agents that could be utilized in therapeutically in controlling Pseudomonas aeruginosa infections.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Franziska S. Birmes ◽  
Ruth Säring ◽  
Miriam C. Hauke ◽  
Niklas H. Ritzmann ◽  
Steffen L. Drees ◽  
...  

ABSTRACT The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.


Sign in / Sign up

Export Citation Format

Share Document