scholarly journals Identification of PGN_1123 as the Gene Encoding Lipid A Deacylase, an Enzyme Required for Toll-Like Receptor 4 Evasion, inPorphyromonas gingivalis

2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Sumita Jain ◽  
Ana M. Chang ◽  
Manjot Singh ◽  
Jeffrey S. McLean ◽  
Stephen R. Coats ◽  
...  

ABSTRACTRemoval of one acyl chain from bacterial lipid A by deacylase activity is a mechanism used by many pathogenic bacteria to evade the host's Toll-like receptor 4 (TLR4)-mediated innate immune response. InPorphyromonas gingivalis, a periodontal pathogen, lipid A deacylase activity converts a majority of the initially synthesized penta-acylated lipid A, a TLR4 agonist, to tetra-acylated structures, which effectively evade TLR4 sensing by being either inert or antagonistic at TLR4. In this paper, we report successful identification of the gene that encodes theP. gingivalislipid A deacylase enzyme. This gene, PGN_1123 inP. gingivalis33277, is highly conserved withinP. gingivalis, and putative orthologs are phylogenetically restricted to theBacteroidetesphylum. Lipid A of ΔPGN_1123 mutants is penta-acylated and devoid of tetra-acylated structures, and the mutant strain provokes a strong TLR4-mediated proinflammatory response, in contrast to the negligible response elicited by wild-typeP. gingivalis. Heterologous expression of PGN_1123 inBacteroides thetaiotaomicronpromoted lipid A deacylation, confirming that PGN_1123 encodes the lipid A deacylase enzyme.IMPORTANCEPeriodontitis, commonly referred to as gum disease, is a chronic inflammatory condition that affects a large proportion of the population.Porphyromonas gingivalisis a bacterium closely associated with periodontitis, although how and if it is a cause for the disease are not known. It has a formidable capacity to dampen the host's innate immune response, enabling its persistence in diseased sites and triggering microbial dysbiosis in animal models of infection.P. gingivalisis particularly adept at evading the host's TLR4-mediated innate immune response by modifying the structure of lipid A, the TLR4 ligand. In this paper, we report identification of the gene encoding lipid A deacylase, a key enzyme that modifies lipid A to TLR4-evasive structures.

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Charles Wayne Frevert ◽  
Renee Hukkanen ◽  
Steve Mongovin ◽  
Kay Larsen ◽  
Mike Agy ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A59
Author(s):  
Kazuhito Rokutan ◽  
Shigetada Teshima ◽  
Tsukasa Kawahara ◽  
Tomoko Kawai ◽  
Takeshi Nikawa ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Teresa Paramo ◽  
Susana M. Tomasio ◽  
Kate L. Irvine ◽  
Clare E. Bryant ◽  
Peter J. Bond

2017 ◽  
Vol 86 (2) ◽  
Author(s):  
Daniel L. Bourque ◽  
Taufiqur Rahman Bhuiyan ◽  
Diane P. Genereux ◽  
Rasheduzzaman Rashu ◽  
Crystal N. Ellis ◽  
...  

ABSTRACTTo better understand the innate immune response toVibrio choleraeinfection, we tracked gene expression in the duodenal mucosa of 11 Bangladeshi adults with cholera, using biopsy specimens obtained immediately after rehydration and 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, mitogen-activated protein kinase (MAPK), and Toll-like receptor (TLR)-mediated signaling pathways, which, unexpectedly, persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across the 11 participants. These genes included the endosomal Toll-like receptor geneTLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signalingin vivo, our pathway analysis found that interferon regulatory factor 7 and beta 1 and alpha 2 interferons were among the top upstream regulators activated during cholera. Among the innate immune effectors, we found that the gene for DUOX2, an NADPH oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases inDUOX2andTLR8expression were also modeledin vitrowhen Caco-2 or THP-1 cells, respectively, were stimulated with liveV. choleraebut not with heat-killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response toV. choleraeextend our understanding of the mucosal immune signaling pathways and effectors activatedin vivofollowing cholera.


2021 ◽  
Vol 12 ◽  
Author(s):  
Coraline Chéneau ◽  
Karsten Eichholz ◽  
Tuan Hiep Tran ◽  
Thi Thu Phuong Tran ◽  
Océane Paris ◽  
...  

Despite decades of clinical and preclinical investigations, we still poorly grasp our innate immune response to human adenoviruses (HAdVs) and their vectors. In this study, we explored the impact of lactoferrin on three HAdV types that are being used as vectors for vaccines. Lactoferrin is a secreted globular glycoprotein that influences direct and indirect innate immune response against a range of pathogens following a breach in tissue homeostasis. The mechanism by which lactoferrin complexes increases HAdV uptake and induce maturation of human phagocytes is unknown. We show that lactoferrin redirects HAdV types from species B, C, and D to Toll-like receptor 4 (TLR4) cell surface complexes. TLR4-mediated internalization of the HAdV-lactoferrin complex induced an NLRP3-associated response that consisted of cytokine release and transient disruption of plasma membrane integrity, without causing cell death. These data impact our understanding of HAdV immunogenicity and may provide ways to increase the efficacy of HAdV-based vectors/vaccines.


2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Ann Progulske-Fox

ABSTRACT The current work by Jain et al. (S. Jain, A. M. Chang, M. Singh, J. S. McLean, et al., J Bacteriol 201:e00683-18, 2019, https://doi.org/10.1128/JB.00683-18) reports the cloning of the lipid A deacylase gene of Porphyromonas gingivalis and the phenotypic characterization of the enzyme. Attempts to clone the gene and thus provide proof of the existence of this enzyme had gone on for 2 decades. The enzyme is central to the bacterium’s ability to modify and tailor the structure of its lipid A, changing a lipid A that is a moderate Toll-like receptor 4 (TLR4) agonist to an antagonist or silencer and thereby potentially changing the course of infection.


Sign in / Sign up

Export Citation Format

Share Document