scholarly journals The RNA-Binding Domain of Bacteriophage P22 N Protein Is Highly Mutable, and a Single Mutation Relaxes Specificity toward λ

2008 ◽  
Vol 190 (23) ◽  
pp. 7699-7708 ◽  
Author(s):  
Alexis I. Cocozaki ◽  
Ingrid R. Ghattas ◽  
Colin A. Smith

ABSTRACT Antitermination in bacteriophage P22, a lambdoid phage, uses the arginine-rich domain of the N protein to recognize boxB RNAs in the nut site of two regulated transcripts. Using an antitermination reporter system, we screened libraries in which each nonconserved residue in the RNA-binding domain of P22 N was randomized. Mutants were assayed for the ability to complement N-deficient virus and for antitermination with P22 boxBleft and boxBright reporters. Single amino acid substitutions complementing P22 N− virus were found at 12 of the 13 positions examined. We found evidence for defined structural roles for seven nonconserved residues, which was generally compatible with the nuclear magnetic resonance model. Interestingly, a histidine can be replaced by any other aromatic residue, although no planar partner is obvious. Few single substitutions showed bias between boxBleft and boxBright, suggesting that the two RNAs impose similar constraints on genetic drift. A separate library comprising only hybrids of the RNA-binding domains of P22, λ, and φ21 N proteins produced mutants that displayed bias. P22 N− plaque size plotted against boxBleft and boxBright reporter activities suggests that lytic viral fitness depends on balanced antitermination. A few N proteins were able to complement both λ N- and P22 N-deficient viruses, but no proteins were found to complement both P22 N- and φ21 N-deficient viruses. A single tryptophan substitution allowed P22 N to complement both P22 and λ N−. The existence of relaxed-specificity mutants suggests that conformational plasticity provides evolutionary transitions between distinct modes of RNA-protein recognition.

1995 ◽  
Vol 15 (1) ◽  
pp. 358-364 ◽  
Author(s):  
S R Green ◽  
L Manche ◽  
M B Mathews

The RNA-binding domain of the protein kinase DAI, the double-stranded RNA inhibitor of translation, contains two repeats of a motif that is also found in a number of other RNA-binding proteins. This motif consists of 67 amino acid residues and is predicted to contain a positively charged alpha helix at its C terminus. We have analyzed the effects of equivalent single amino acid changes in three conserved residues distributed over each copy of the motif. Mutants in the C-terminal portion of either repeat were severely defective, indicating that both copies of the motif are essential for RNA binding. Changes in the N-terminal and central parts of the motif were more debilitating if they were made in the first motif than in the second, suggesting that the first motif is the more important for RNA binding and that the second motif is structurally more flexible. When the second motif was replaced by a duplicate of the first motif, the ectopic copy retained its greater sensitivity to mutation, implying that the two motifs have distinct functions with respect to the process of RNA binding. Furthermore, the mutations have the same effect on the binding of double-stranded RNA and VA RNA, consistent with the existence of a single RNA-binding domain for both activating and inhibitory RNAs.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Reza Zolfaghari Emameh ◽  
Mahyar Eftekhari ◽  
Hassan Nosrati ◽  
Jalal Heshmatnia ◽  
Reza Falak

Abstract Objective This study describes the occurrence of a silent mutation in the RNA binding domain of nucleocapsid phosphoprotein (N protein) coding gene from SARS-CoV-2 that may consequence to a missense mutation by onset of another single nucleotide mutation. Results In the DNA sequence isolated from severe acute respiratory syndrome (SARS-CoV-2) in Iran, a coding sequence for the RNA binding domain of N protein was detected. The comparison of Chinese and Iranian DNA sequences displayed that a thymine (T) was mutated to cytosine (C), so “TTG” from China was changed to “CTG” in Iran. Both DNA sequences from Iran and China have been encoded for leucine. In addition, the second T in “CTG” in the DNA or uracil (U) in “CUG” in the RNA sequences from Iran can be mutated to another C by a missense mutation resulting from thymine DNA glycosylase (TDG) of human and base excision repair mechanism to produce “CCG” encoding for proline, which consequently may increase the affinity of the RNA binding domain of N protein to viral RNA and improve the transcription rate, pathogenicity, evasion from human immunity system, spreading in the human body, and risk of human-to-human transmission rate of SARS-CoV-2.


1998 ◽  
Vol 1 (2) ◽  
pp. 265-275 ◽  
Author(s):  
Jeremy Mogridge ◽  
Pascale Legault ◽  
Joyce Li ◽  
Mark D Van Oene ◽  
Lewis E Kay ◽  
...  

2002 ◽  
Vol 66 (3) ◽  
pp. 682-684 ◽  
Author(s):  
Takeshi HAYASHI ◽  
Maino TAHARA ◽  
Kenta IWASAKI ◽  
Yoshiaki KOUZUMA ◽  
Makoto KIMURA

FEBS Letters ◽  
2021 ◽  
Author(s):  
Guan‐Ru Liao ◽  
Yeu‐Yang Tseng ◽  
Ching‐Yu Tseng ◽  
Ying‐Ping Huang ◽  
Ching‐Hsiu Tsai ◽  
...  

1993 ◽  
Vol 268 (27) ◽  
pp. 20198-20204
Author(s):  
L.E. Donate ◽  
J.M. Valpuesta ◽  
C Mier ◽  
F Rojo ◽  
J.L. Carrascosa

Sign in / Sign up

Export Citation Format

Share Document