scholarly journals Pseudomonas syringae HrpP Is a Type III Secretion Substrate Specificity Switch Domain Protein That Is Translocated into Plant Cells but Functions Atypically for a Substrate-Switching Protein

2009 ◽  
Vol 191 (9) ◽  
pp. 3120-3131 ◽  
Author(s):  
Joanne E. Morello ◽  
Alan Collmer

ABSTRACT Pseudomonas syringae delivers virulence effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). P. syringae pv. tomato DC3000 HrpP has a C-terminal, putative T3SS substrate specificity switch domain, like Yersinia YscP. A ΔhrpP DC3000 mutant could not cause disease in tomato or elicit a hypersensitive response (HR) in tobacco, but the HR could be restored by expression of HrpP in trans. Though HrpP is a relatively divergent protein in the T3SS of different P. syringae pathovars, hrpP from P. syringae pv. syringae 61 and P. syringae pv. phaseolicola 1448A restored HR elicitation and pathogenicity to DC3000 ΔhrpP. HrpP was translocated into Nicotiana benthamiana cells via the DC3000 T3SS when expressed from its native promoter, but it was not secreted in culture. N- and C-terminal truncations of HrpP were tested for their ability to be translocated and to restore HR elicitation activity to the ΔhrpP mutant. No N-terminal truncation completely abolished translocation, implying that HrpP has an atypical T3SS translocation signal. Deleting more than 20 amino acids from the C terminus abolished the ability to restore HR elicitation. HrpP fused to green fluorescent protein was no longer translocated but could restore HR elicitation activity to the ΔhrpP mutant, suggesting that translocation is not essential for the function of HrpP. No T3SS substrates were detectably secreted by DC3000 ΔhrpP except the pilin subunit HrpA, which unexpectedly was secreted poorly. HrpP may function somewhat differently than YscP because the P. syringae T3SS pilus likely varies in length due to differing plant cell walls.

2010 ◽  
Vol 23 (2) ◽  
pp. 198-210 ◽  
Author(s):  
Christopher R. Clarke ◽  
Rongman Cai ◽  
David J. Studholme ◽  
David S. Guttman ◽  
Boris A. Vinatzer

Pseudomonas syringae is best known as a plant pathogen that causes disease by translocating immune-suppressing effector proteins into plant cells through a type III secretion system (T3SS). However, P. syringae strains belonging to a newly described phylogenetic subgroup (group 2c) are missing the canonical P. syringae hrp/hrc cluster coding for a T3SS, flanking effector loci, and any close orthologue of known P. syringae effectors. Nonetheless, P. syringae group 2c strains are common leaf colonizers and grow on some tested plant species to population densities higher than those obtained by other P. syringae strains on nonhost species. Moreover, group 2c strains have genes necessary for the production of phytotoxins, have an ice nucleation gene, and, most interestingly, contain a novel hrp/hrc cluster, which is only distantly related to the canonical P. syringae hrp/hrc cluster. This hrp/hrc cluster appears to encode a functional T3SS although the genes hrpK and hrpS, present in the classical P. syringae hrp/hrc cluster, are missing. The genome sequence of a representative group 2c strain also revealed distant orthologues of the P. syringae effector genes avrE1 and hopM1 and the P. aeruginosa effector genes exoU and exoY. A putative life cycle for group 2c P. syringae is discussed.


2006 ◽  
Vol 74 (5) ◽  
pp. 2552-2561 ◽  
Author(s):  
Shira D. P. Rabin ◽  
Jeffrey L. Veesenmeyer ◽  
Kathryn T. Bieging ◽  
Alan R. Hauser

ABSTRACT ExoU, a phospholipase injected into host cells by the type III secretion system of Pseudomonas aeruginosa, leads to rapid cytolytic cell death. Although the importance of ExoU in infection is well established, the mechanism by which this toxin kills host cells is less clear. To gain insight into how ExoU causes cell death, we examined its subcellular localization following transfection or type III secretion/translocation into HeLa cells. Although rapid cell lysis precluded visualization of wild-type ExoU by fluorescence microscopy, catalytically inactive toxin was readily detected at the periphery of HeLa cells. Biochemical analysis confirmed that ExoU was targeted to the membrane fraction of transfected cells. Visualization of ExoU peptides fused with green fluorescent protein indicated that the domain responsible for this targeting was in the C terminus of ExoU, between residues 550 and 687. Localization to the plasma membrane occurred within 1 h of expression, which is consistent with the kinetics of cytotoxicity. Together, these results indicate that a domain between residues 550 and 687 of ExoU targets this toxin to the plasma membrane, a process that may be important in cytotoxicity.


2007 ◽  
Vol 189 (15) ◽  
pp. 5773-5778 ◽  
Author(s):  
Adela R. Ramos ◽  
Joanne E. Morello ◽  
Sandeep Ravindran ◽  
Wen-Ling Deng ◽  
Hsiou-Chen Huang ◽  
...  

ABSTRACT Pseudomonas syringae translocates effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). T3SS components HrpB, HrpD, HrpF, and HrpP were shown to be pathway substrates and to contribute to elicitation of the plant hypersensitive response and to translocation and secretion of the model effector AvrPto1.


2004 ◽  
Vol 186 (2) ◽  
pp. 543-555 ◽  
Author(s):  
Lisa M. Schechter ◽  
Kathy A. Roberts ◽  
Yashitola Jamir ◽  
James R. Alfano ◽  
Alan Collmer

ABSTRACT Pseudomonas syringae pv. tomato strain DC3000 is a pathogen of tomato and Arabidopsis. The hrp-hrc-encoded type III secretion system (TTSS), which injects bacterial effector proteins (primarily called Hop or Avr proteins) into plant cells, is required for pathogenicity. In addition to being regulated by the HrpL alternative sigma factor, most avr or hop genes encode proteins with N termini that have several characteristic features, including (i) a high percentage of Ser residues, (ii) an aliphatic amino acid (Ile, Leu, or Val) or Pro at the third or fourth position, and (iii) a lack of negatively charged amino acids within the first 12 residues. Here, the well-studied effector AvrPto was used to optimize a calmodulin-dependent adenylate cyclase (Cya) reporter system for Hrp-mediated translocation of P. syringae TTSS effectors into plant cells. This system includes a cloned P. syringae hrp gene cluster and the model plant Nicotiana benthamiana. Analyses of truncated AvrPto proteins fused to Cya revealed that the N-terminal 16 amino acids and/or codons of AvrPto are sufficient to direct weak translocation into plant cells and that longer N-terminal fragments direct progressively stronger translocation. AvrB, tested because it is poorly secreted in cultures by the P. syringae Hrp system, was translocated into plant cells as effectively as AvrPto. The translocation of several DC3000 candidate Hop proteins was also examined by using Cya as a reporter, which led to identification of three new intact Hop proteins, designated HopPtoQ, HopPtoT1, and HopPtoV, as well as two truncated Hop proteins encoded by the naturally disrupted genes hopPtoS4::tnpA and hopPtoAG::tnpA. We also confirmed that HopPtoK, HopPtoC, and AvrPphEPto are translocated into plant cells. These results increased the number of Hrp system-secreted proteins in DC3000 to 40. Although most of the newly identified Hop proteins possess N termini that have the same features as the N termini of previously described Hop proteins, HopPtoV has none of these characteristics. Our results indicate that Cya should be a useful reporter for exploring multiple aspects of the Hrp system in P. syringae.


2008 ◽  
Vol 190 (8) ◽  
pp. 2858-2870 ◽  
Author(s):  
Toni J. Mohr ◽  
Haijie Liu ◽  
Shuangchun Yan ◽  
Cindy E. Morris ◽  
José A. Castillo ◽  
...  

ABSTRACT Pseudomonas syringae causes plant diseases, and the main virulence mechanism is a type III secretion system (T3SS) that translocates dozens of effector proteins into plant cells. Here we report the existence of a subgroup of P. syringae isolates that do not cause disease on any plant species tested. This group is monophyletic and most likely evolved from a pathogenic P. syringae ancestor through loss of the T3SS. In the nonpathogenic isolate P. syringae 508 the genomic region that in pathogenic P. syringae strains contains the hrp-hrc cluster coding for the T3SS and flanking effector genes is absent. P. syringae 508 was also surveyed for the presence of effector orthologues from the closely related pathogenic strain P. syringae pv. syringae B728a, but none were detected. The absence of the hrp-hrc cluster and effector orthologues was confirmed for other nonpathogenic isolates. Using the AvrRpt2 effector as reporter revealed the inability of P. syringae 508 to translocate effectors into plant cells. Adding a plasmid-encoded T3SS and the P. syringae pv. syringae 61 effector gene hopA1 increased in planta growth almost 10-fold. This suggests that P. syringae 508 supplemented with a T3SS could be used to determine functions of individual effectors in the context of a plant infection, avoiding the confounding effect of other effectors with similar functions present in effector mutants of pathogenic isolates.


2007 ◽  
Vol 189 (22) ◽  
pp. 8277-8289 ◽  
Author(s):  
Hye-Sook Oh ◽  
Brian H. Kvitko ◽  
Joanne E. Morello ◽  
Alan Collmer

ABSTRACT Pseudomonas syringae translocates virulence effector proteins into plant cells via a type III secretion system (T3SS) encoded by hrp (for hypersensitive response and pathogenicity) genes. Three genes coregulated with the Hrp T3SS system in P. syringae pv. tomato DC3000 have predicted lytic transglycosylase domains: PSPTO1378 (here designated hrpH), PSPTO2678 (hopP1), and PSPTO852 (hopAJ1). hrpH is located between hrpR and avrE1 in the Hrp pathogenicity island and is carried in the functional cluster of P. syringae pv. syringae 61 hrp genes cloned in cosmid pHIR11. Strong expression of DC3000 hrpH in Escherichia coli inhibits bacterial growth unless the predicted catalytic glutamate at position 148 is mutated. Translocation tests involving C-terminal fusions with a Cya (Bordetella pertussis adenylate cyclase) reporter indicate that HrpH and HopP1, but not HopAJ1, are T3SS substrates. Pseudomonas fluorescens carrying a pHIR11 derivative lacking hrpH is poorly able to translocate effector HopA1, and this deficiency can be restored by HopP1 and HopAJ1, but not by HrpH(E148A) or HrpH1-241. DC3000 mutants lacking hrpH or hrpH, hopP1, and hopAJ1 combined are variously reduced in effector translocation, elicitation of the hypersensitive response, and virulence. However, the mutants are not reduced in secretion of T3SS substrates in culture. When produced in wild-type DC3000, the HrpH(E148A) and HrpH1-241 variants have a dominant-negative effect on the ability of DC3000 to elicit the hypersensitive response in nonhost tobacco and to grow and cause disease in host tomato. The three Hrp-associated lytic transglycosylases in DC3000 appear to have overlapping functions in contributing to T3SS functions during infection.


2009 ◽  
Vol 22 (11) ◽  
pp. 1341-1355 ◽  
Author(s):  
Kathy R. Munkvold ◽  
Alistair B. Russell ◽  
Brian H. Kvitko ◽  
Alan Collmer

The ability of Pseudomonas syringae pv. tomato DC3000 to cause bacterial speck disease in tomato is dependent on the injection, via the type III secretion system, of approximately 28 Avr/Hop effector proteins. HopAA1-1 is encoded in the conserved effector locus (CEL) of the P. syringae Hrp pathogenicity island. Transiently expressed HopAA1-1 acts inside Saccharomyces cerevisiae and plant cells to elicit cell death. hopAA1 homologs were cloned and sequenced from the CEL of seven P. syringae strains representing diverse pathovars. Analysis of the sequences revealed that HopAA1-1 carries a potential GTPase-activating protein (GAP) domain, GALRA, which is polymorphic (FEN instead of LRA) in HopAA1-2, a paralogous DC3000 effector. Deleting hopAA1-1 from DC3000 reduces the formation of necrotic speck lesions in dip-inoculated tomato leaves if effector-gene cluster IX or just PSPTO4723 within this region has been deleted. A HopAA1-1 mutant in which the putative catalytic arginine in the GAP-like domain has been replaced with alanine retains its ability to kill yeast and promote the formation of speck lesions by the ΔhopAA1-1ΔIX mutant, but a HopAA1-1 mutant carrying the FEN polymorphism loses both of these abilities. Unexpectedly, PSPTO4723 does not appear to encode an effector and its deletion also reduces disease-associated chlorosis.


2009 ◽  
Vol 22 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Ayako Furutani ◽  
Minako Takaoka ◽  
Harumi Sanada ◽  
Yukari Noguchi ◽  
Takashi Oku ◽  
...  

Many gram-negative bacteria secrete so-called effector proteins via a type III secretion (T3S) system. Through genome screening for genes encoding potential T3S effectors, 60 candidates were selected from rice pathogen Xanthomonas oryzae pv. oryzae MAFF311018 using these criteria: i) homologs of known T3S effectors in plant-pathogenic bacteria, ii) genes with expression regulated by hrp regulatory protein HrpX, or iii) proteins with N-terminal amino acid patterns associated with T3S substrates of Pseudomonas syringae. Of effector candidates tested with the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter for translocation into plant cells, 16 proteins were translocated in a T3S system-dependent manner. Of these 16 proteins, nine were homologs of known effectors in other plant-pathogenic bacteria and seven were not. Most of the effectors were widely conserved in Xanthomonas spp.; however, some were specific to X. oryzae. Interestingly, all these effectors were expressed in an HrpX-dependent manner, suggesting coregulation of effectors and the T3S system. In X. campestris pv. vesicatoria, HpaB and HpaC (HpaP in X. oryzae pv. oryzae) have a central role in recruiting T3S substrates to the secretion apparatus. Secretion of all but one effector was reduced in both HpaB– and HpaP– mutant strains, indicating that HpaB and HpaP are widely involved in efficient secretion of the effectors.


2017 ◽  
Vol 29 (7) ◽  
pp. 1571-1584 ◽  
Author(s):  
Eunsook Park ◽  
Hye-Young Lee ◽  
Jongchan Woo ◽  
Doil Choi ◽  
Savithramma P. Dinesh-Kumar

Physiology ◽  
2005 ◽  
Vol 20 (5) ◽  
pp. 326-339 ◽  
Author(s):  
Paul Troisfontaines ◽  
Guy R. Cornelis

The type III secretion (T3S) pathway allows bacteria to inject effector proteins into the cytosol of target animal or plant cells. T3S systems evolved into seven families that were distributed among Gram-negative bacteria by horizontal gene transfer. There are probably a few hundred effectors interfering with control and signaling in eukaryotic cells and offering a wealth of new tools to cell biologists.


Sign in / Sign up

Export Citation Format

Share Document