Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization.

1985 ◽  
Vol 163 (3) ◽  
pp. 1180-1185 ◽  
Author(s):  
C Roncero ◽  
A Durán
2011 ◽  
Vol 166 (1) ◽  
pp. 87-93 ◽  
Author(s):  
M. Terčelj ◽  
S. Stopinšek ◽  
A. Ihan ◽  
B. Salobir ◽  
S. Simčič ◽  
...  

2006 ◽  
Vol 72 (12) ◽  
pp. 7778-7784 ◽  
Author(s):  
Urszula Perlińska-Lenart ◽  
Jacek Orłowski ◽  
Agnieszka E. Laudy ◽  
Ewa Zdebska ◽  
Grażyna Palamarczyk ◽  
...  

ABSTRACT Expression of the Saccharomyces cerevisiae DPM1 gene (coding for dolichylphosphate mannose synthase) in Trichoderma reesei (Hypocrea jecorina) increases the intensity of protein glycosylation and secretion and causes ultrastructural changes in the fungal cell wall. In the present work, we undertook further biochemical and morphological characterization of the DPM1-expressing T. reesei strains. We established that the carbohydrate composition of the fungal cell wall was altered with an increased amount of N-acetylglucosamine, suggesting an increase in chitin content. Calcofluor white staining followed by fluorescence microscopy indicated changes in chitin distribution. Moreover, we also observed a decreased concentration of mannose and alkali-soluble β-(1,6) glucan. A comparison of protein secretion from protoplasts with that from mycelia showed that the cell wall created a barrier for secretion in the DPM1 transformants. We also discuss the relationships between the observed changes in the cell wall, increased protein glycosylation, and the greater secretory capacity of T. reesei strains expressing the yeast DPM1 gene.


2019 ◽  
Vol 19 (10) ◽  
pp. 812-830 ◽  
Author(s):  
P. Marie Arockianathan ◽  
Monika Mishra ◽  
Rituraj Niranjan

The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.


2021 ◽  
pp. 2100110
Author(s):  
Liyuan Zhang ◽  
Mengchen Zhang ◽  
Gongping Liu ◽  
Wanqin Jin ◽  
Xiaoyan Li

Sign in / Sign up

Export Citation Format

Share Document