scholarly journals Conjugal transfer of antibiotic resistance factors in Bacteroides fragilis: the btgA and btgB genes of plasmid pBFTM10 are required for its transfer from Bacteroides fragilis and for its mobilization by IncP beta plasmid R751 in Escherichia coli.

1991 ◽  
Vol 173 (23) ◽  
pp. 7471-7480 ◽  
Author(s):  
D W Hecht ◽  
T J Jagielo ◽  
M H Malamy
2020 ◽  
Vol 8 (6) ◽  
pp. 893 ◽  
Author(s):  
Daniel Jaén-Luchoro ◽  
Antonio Busquets ◽  
Roger Karlsson ◽  
Francisco Salvà-Serra ◽  
Christina Åhrén ◽  
...  

Escherichia coli strain CCUG 78773 is a virulent extended-spectrum β-lactamase (ESBL)-producing ST131-O25b type strain isolated during an outbreak at a regional university hospital. The complete and closed genome sequence, comprising one chromosome (5,076,638 bp) and six plasmids (1718–161,372 bp), is presented. Characterization of the genomic features detected the presence of 59 potential antibiotic resistance factors, including three prevalent β-lactamases. Several virulence associated elements were determined, mainly related with adherence, invasion, biofilm formation and antiphagocytosis. Twenty-eight putative type II toxin-antitoxin systems were found. The plasmids were characterized, through in silico analyses, confirming the two β-lactamase-encoding plasmids to be conjugative, while the remaining plasmids were mobilizable. BLAST analysis of the plasmid sequences showed high similarity with plasmids in E. coli from around the world. Expression of many of the described virulence and AMR factors was confirmed by proteomic analyses, using bottom-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS). The detailed characterization of E. coli strain CCUG 78773 provides a reference for the relevance of genetic elements, as well as the characterization of antibiotic resistance and the spread of bacteria harboring ESBL genes in the hospital environment.


Sign in / Sign up

Export Citation Format

Share Document