scholarly journals Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.

1992 ◽  
Vol 174 (23) ◽  
pp. 7819-7826 ◽  
Author(s):  
U Varshney ◽  
U L RajBhandary
2019 ◽  
Author(s):  
Christopher R. Evans ◽  
Yongqiang Fan ◽  
Jiqiang Ling

AbstractThe misincorporation of an incorrect amino acid into a polypeptide during protein synthesis is considered a detrimental phenomenon. Mistranslated protein is often misfolded and degraded or non-functional and results in an increased cost to quality control machinery. Despite these costs, errors during protein synthesis are common in bacteria. Here we report that increased rates of mistranslation inEscherichia coliprovide protection from protein misfolding stress by increasing the level of the heat shock sigma factor, RpoH. Surprisingly, this increase in RpoH due to mistranslation is dependent on the presence of the general stress response sigma factor, RpoS. This report provides evidence for a protective function of mistranslation and suggests a novel regulatory role of RpoS on the RpoH-activated heat shock.


1974 ◽  
Vol 60 (3) ◽  
pp. 755-763 ◽  
Author(s):  
Jonas B. Galper

HeLa cell mitochondrial proteins have been shown to be the products of two separate protein-synthesizing systems; one, the general cellular mechanism, sensitive to inhibition by cycloheximide, the other, a specific mitochondrial system subject to inhibition by low concentrations of chloramphenicol (Galper, J. B., and J. E. Darnell. 1971. J. Mol. Biol 57:363). Preliminary data have suggested that a mitochondrial N-formyl-methionyl-tRNA (f-Met-tRNA) might be the initiator tRNA in the latter (Galper, J. B., and J. E. Darnell. 1969. Biochem. Biophys. Res. Commun. 34:205; 1971. J. Mol. Biol. 57:363). It is demonstrated here that the synthesis of these endogenous mitochondrial proteins is also subject to inhibition by ethidium bromide and decays with a half-life of 1½–2 h in cultures incubated with low concentrations of this dye. The role of formylated f-Met-tRNA as the initiator tRNA in the synthesis of mitochondrial proteins is supported by data from several experiments. The rates of ethidium bromide inhibition of both the charging of f-Met-tRNA and of the synthesis of mitochondrial proteins are strikingly similar. Inhibition by aminopterin of the formylation of f-Met-tRNA greatly depresses the rate of mitochondrial-specific protein synthesis. In the absence of the synthesis of these proteins, respiration, the levels of cytochromes a–a3 and b, and the number of mitochondrial cristae are decreased. The implications of these findings as they relate to mitochondrial biogenesis are discussed.


2001 ◽  
Vol 183 (24) ◽  
pp. 7397-7402 ◽  
Author(s):  
Swapna Thanedar ◽  
T. K. Dineshkumar ◽  
Umesh Varshney

ABSTRACT Formylation of initiator methionyl-tRNA is essential for normal growth of eubacteria. However, under special conditions, it has been possible to initiate protein synthesis with unformylated initiator tRNA even in eubacteria. Earlier studies suggested that the lack of ribothymidine (rT) modification in initiator tRNA may facilitate initiation in the absence of formylation. In this report we show, by using trmA strains of Escherichia coli(defective for rT modification) and a sensitive in vivo initiation assay system, that the lack of rT modification in the initiators is not sufficient to effect formylation-independent initiation of protein synthesis.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Paul Kelly ◽  
Nicholas Backes ◽  
Kyle Mohler ◽  
Christopher Buser ◽  
Arundhati Kavoor ◽  
...  

ABSTRACT Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others are clearly detrimental. Here, we show that while it has been suggested that regulated Thr-to-Ser substitutions may be beneficial, there is a threshold beyond which these errors are detrimental. In contrast, we show that errors mediated by alanyl-tRNA synthetase (AlaRS) are not well tolerated and induce a global stress response that leads to gross perturbation of the Escherichia coli proteome, with potentially catastrophic effects on fitness and viability. Tolerance for Ala mistranslation appears to be much lower than with other translational errors, consistent with previous reports of multiple proofreading mechanisms targeting mischarged tRNAAla. These results demonstrate the essential role of aminoacyl-tRNA proofreading in optimizing cellular fitness and suggest that any potentially beneficial effects of mistranslation may be confined to specific amino acid substitutions. IMPORTANCE Errors in protein synthesis have historically been assumed to be detrimental to the cell. While there are many reports that translational errors are consequential, there is a growing body of evidence that some mistranslation events may be tolerated or even beneficial. Using two models of mistranslation, we compare the direct phenotypic effects of these events in Escherichia coli. This work provides insight into the threshold for tolerance of specific mistranslation events that were previously predicted to be broadly neutral to proteome integrity. Furthermore, these data reveal the effects of mistranslation beyond the general unfolded stress response, leading to global translational reprogramming.


Biochemistry ◽  
1969 ◽  
Vol 8 (8) ◽  
pp. 3428-3432 ◽  
Author(s):  
Luciano Felicetti ◽  
G. P. Tocchini-Valentini ◽  
G. F. Di Matteo

1969 ◽  
Vol 34 (0) ◽  
pp. 291-299 ◽  
Author(s):  
A. J. Wahba ◽  
K. Iwasaki ◽  
M. J. Miller ◽  
S. Sabol ◽  
M. A. G. Sillero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document