scholarly journals Molecular Cloning and Characterization of cgs, theBrucella abortus Cyclic β(1-2) Glucan Synthetase Gene: Genetic Complementation of Rhizobium meliloti ndvB andAgrobacterium tumefaciens chvB Mutants

1998 ◽  
Vol 180 (17) ◽  
pp. 4392-4400 ◽  
Author(s):  
Nora Iñón de Iannino ◽  
Gabriel Briones ◽  
Marcelo Tolmasky ◽  
Rodolfo A. Ugalde

ABSTRACT The animal pathogen Brucella abortus contains a gene,cgs, that complemented a Rhizobium melilotinodule development (ndvB) mutant and an Agrobacterium tumefaciens chromosomal virulence (chvB) mutant. The complemented strains recovered the synthesis of cyclic β(1-2) glucan, motility, virulence in A. tumefaciens, and nitrogen fixation in R. meliloti; all traits were strictly associated with the presence of an active cyclic β(1-2) glucan synthetase protein in the membranes. Nucleotide sequencing revealed the presence in B. abortus of an 8.49-kb open reading frame coding for a predicted membrane protein of 2,831 amino acids (316.2 kDa) and with 51% identity to R. meliloti NdvB. Four regions of the B. abortus protein spanning amino acids 520 to 800, 1025 to 1124, 1284 to 1526, and 2400 to 2660 displayed similarities of higher than 80% with R. meliloti NdvB. Tn3-HoHo1 mutagenesis showed that the C-terminal 825 amino acids of the Brucella protein, although highly conserved inRhizobium, are not necessary for cyclic β(1-2) glucan synthesis. Confirmation of the identity of this protein as B. abortus cyclic β(1-2) glucan synthetase was done by the construction of a B. abortus Tn3-HoHo1 insertion mutant that does not form cyclic β(1-2) glucan and lacks the 316.2-kDa membrane protein. The recovery of this mutant from the spleens of inoculated mice was decreased by 3 orders of magnitude compared with that of the parental strain; this result suggests that cyclic β(1-2) glucan may be a virulence factor inBrucella infection.

2004 ◽  
Vol 72 (4) ◽  
pp. 2263-2271 ◽  
Author(s):  
Mara S. Roset ◽  
Andrés E. Ciocchini ◽  
Rodolfo A. Ugalde ◽  
Nora Iñón de Iannino

ABSTRACT The animal pathogen Brucella abortus contains a gene cgt, which complemented Sinorhizobium meliloti nodule development (ndvA) and Agrobacterium tumefaciens chromosomal virulence (chvA) mutants. Complemented strains recovered the presence of anionic cyclic β-1,2-glucan, motility, tumor induction in A. tumefaciens, and nodule occupancy in S. meliloti, all traits strictly associated with the presence of cyclic β-1,2-glucan in the periplasm. Nucleotide sequencing revealed that B. abortus cgt contains a 1,797-bp open reading frame coding for a predicted membrane protein of 599 amino acids (65.9 kDa) that is 58.5 and 59.9% identical to S. meliloti NdvA and A. tumefaciens ChvA, respectively. Additionally, B. abortus cgt, like S. meliloti ndvA and A. tumefaciens chvA possesses ATP-binding motifs and the ABC signature domain features of a typical ABC transporter. Characterization of Cgt was carried out by the construction of null mutants in B. abortus 2308 and S19 backgrounds. Both mutants do not transport cyclic β-1,2-glucan to the periplasm, as shown by the absence of anionic cyclic glucan, and they display reduced virulence in mice and defective intracellular multiplication in HeLa cells. These results suggest that cyclic β-1,2-glucan must be transported into the periplasmatic space to exert its action as a virulence factor.


2000 ◽  
Vol 66 (12) ◽  
pp. 5480-5483 ◽  
Author(s):  
Sean S. Dineen ◽  
Marite Bradshaw ◽  
Eric A. Johnson

ABSTRACT Boticin B is a heat-stable bacteriocin produced byClostridium botulinum strain 213B that has inhibitory activity against various strains of C. botulinum and related clostridia. The gene encoding the bacteriocin was localized to a 3.0-kb HindIII fragment of an 18.8-kb plasmid, cloned, and sequenced. DNA sequencing revealed the boticin B structural gene,btcB, to be an open reading frame encoding 50 amino acids. A C. botulinum strain 62A transconjugant containing theHindIII fragment inserted into a clostridial shuttle vector expressed boticin B, although at much lower levels than those observed in C. botulinum 213B. To our knowledge, this is the first demonstration and characterization of a bacteriocin from toxigenic group I C. botulinum.


2019 ◽  
Vol 8 (33) ◽  
Author(s):  
T. O. C. Faleye ◽  
O. M. Adewumi ◽  
J. A. Adeniji

Here, we describe the genome of an echovirus 7 (E7) isolate of Southeast Asian ancestry recovered from a child in Nigeria with acute flaccid paralysis (AFP). The genome has 7,295 nucleotides (nt) and an open reading frame (ORF) with 2,195 amino acids.


2000 ◽  
Vol 66 (10) ◽  
pp. 4230-4236 ◽  
Author(s):  
Therese Faye ◽  
Thor Langsrud ◽  
Ingolf F. Nes ◽  
Helge Holo

ABSTRACT A collection of propionibacteria was screened for bacteriocin production. A new bacteriocin named propionicin T1 was isolated from two strains of Propionibacterium thoenii. This bacteriocin shows no sequence similarity to other bacteriocins. Propionicin T1 was active against all strains of Propionibacterium acidipropionici, Propionibacterium thoenii, andPropionibacterium jensenii tested and also againstLactobacillus sake NCDO 2714 but showed no activity againstPropionibacterium freudenreichii. The bacteriocin was purified, and the N-terminal part of the peptide was determined with amino acid sequencing. The corresponding gene pctA was sequenced, and this revealed that propionicin T1 is produced as a prebacteriocin of 96 amino acids with a typical sec leader, which is processed to give a mature bacteriocin of 65 amino acids. An open reading frame encoding a protein of 424 amino acids was found 68 nucleotides downstream the stop codon of pctA. The N-terminal part of this putative protein shows strong similarity with the ATP-binding cassette of prokaryotic and eukaryotic ABC transporters, and this protein may be involved in self-protection against propionicin T1. Propionicin T1 is the first bacteriocin from propionibacteria that has been isolated and further characterized at the molecular level.


1998 ◽  
Vol 64 (2) ◽  
pp. 549-554 ◽  
Author(s):  
Ji-Quan Liu ◽  
Saeko Ito ◽  
Tohru Dairi ◽  
Nobuya Itoh ◽  
Michihiko Kataoka ◽  
...  

ABSTRACT A low-specificity l-threonine aldolase (l-TA) gene from Pseudomonas sp. strain NCIMB 10558 was cloned and sequenced. The gene contains an open reading frame consisting of 1,041 nucleotides corresponding to 346 amino acid residues. The gene was overexpressed in Escherichia colicells, and the recombinant enzyme was purified and characterized. The enzyme, requiring pyridoxal 5′-phosphate as a coenzyme, is strictlyl specific at the α position, whereas it cannot distinguish between threo and erythro forms at the β position. In addition to threonine, the enzyme also acts on various other l-β-hydroxy-α-amino acids, includingl-β-3,4-dihydroxyphenylserine,l-β-3,4-methylenedioxyphenylserine, andl-β-phenylserine. The predicted amino acid sequence displayed less than 20% identity with those of low-specificityl-TA from Saccharomyces cerevisiae,l-allo-threonine aldolase from Aeromonas jandaei, and four relevant hypothetical proteins from other microorganisms. However, lysine 207 of low-specificity l-TA from Pseudomonas sp. strain NCIMB 10558 was found to be completely conserved in these proteins. Site-directed mutagenesis experiments showed that substitution of Lys207 with Ala or Arg resulted in a significant loss of enzyme activity, with the corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys207 of thel-TA probably functions as an essential catalytic residue, forming an internal Schiff base with the pyridoxal 5′-phosphate of the enzyme to catalyze the reversible aldol reaction.


2001 ◽  
Vol 183 (8) ◽  
pp. 2686-2690 ◽  
Author(s):  
Regina J. Tanzer ◽  
Thomas P. Hatch

ABSTRACT We used a photoactivatable, lipophilic reagent, 3′-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, to label proteins in the outer membrane of elementary bodies ofChlamydia trachomatis LGV serovar L2 and mass spectrometry to identify the labeled proteins. The identified proteins were polymorphic outer membrane proteins E, G, and H, which were made late in the developmental cycle, the major outer membrane protein, and a mixture of 46-kDa proteins consisting of the open reading frame 623 protein and possibly a modified form of the major outer membrane protein.


2002 ◽  
Vol 68 (8) ◽  
pp. 3830-3840 ◽  
Author(s):  
Shinichi Kawamoto ◽  
Jun Shima ◽  
Rumi Sato ◽  
Tomoko Eguchi ◽  
Sadahiro Ohmomo ◽  
...  

ABSTRACT Mundticin KS, a bacteriocin produced by Enterococcus mundtii NFRI 7393 isolated from grass silage in Thailand, is active against closely related lactic acid bacteria and the food-borne pathogen Listeria monocytogenes. In this study, biochemical and genetic characterization of mundticin KS was done. Mundticin KS was purified to homogeneity by ammonium sulfate precipitation, sequential ion-exchange chromatography, and solid-phase extraction. The gene cluster (mun locus) for mundticin KS production was cloned, and DNA sequencing revealed that the mun locus consists of three genes, designated munA, munB, and munC. The munA gene encodes a 58-amino-acid mundticin KS precursor, munB encodes a protein of 674 amino acids involved in translocation and processing of the bacteriocin, and munC encodes a mundticin KS immunity protein of 98 amino acids. Amino acid and nucleotide sequencing revealed the complete, unambiguous primary structure of mundticin KS; mundticin KS comprises a 43-amino-acid peptide with an amino acid sequence similar to that of mundticin ATO6 produced by E. mundtii ATO6. Mundticin KS and mundticin ATO6 are distinguished by the inversion of the last two amino acids at their respective C termini. These two mundticins were expressed in Escherichia coli as recombinant peptides and found to be different in activity against certain Lactobacillus strains, such as Lactobacillus plantarum and Lactobacillus curvatus. Mundticin KS was successfully expressed by transformation with the recombinant plasmid containing the mun locus in heterogeneous hosts such as E. faecium, L. curvatus, and Lactococcus lactis. Based on our results, the mun locus is located on a 50-kb plasmid, pML1, of E. mundtii NFRI 7393.


2003 ◽  
Vol 370 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Liang LIANG ◽  
Mujun ZHAO ◽  
Zhenhua XU ◽  
Kazunari K. YOKOYAMA ◽  
Tsaiping LI

DNA fragmentation is one of the critical steps in apoptosis, which is induced by DNA fragmentation factor (DFF). DFF is composed of two subunits, a 40kDa caspase-activated nuclease (DFF40) and a 45kDa inhibitor (DFF45). Recently a novel family of cell-death-inducing DFF45-like effectors (CIDEs) has been identified. Among CIDEs, two from human (CIDE-A and CIDE-B) and three from mouse (CIDE-A, CIDE-B and FSP27) have been reported. In this study human CIDE-3, a novel member of CIDEs, was identified upon sequence analysis of a previously unidentified cDNA that encoded a protein of 238 amino acids. It was shown to be a human homologue of mouse FSP27, and shared homology with the CIDE-N and CIDE-C domains of CIDEs. Apoptosis-inducing activity was clearly shown by DNA-fragmentation assay of the nuclear DNA of CIDE-3 transfected 293T cells. The expression pattern of CIDE-3 was different from that of CIDE-B. As shown by Northern-blot analysis, CIDE-3 was expressed mainly in human small intestine, heart, colon and stomach, while CIDE-B showed strong expression in liver and small intestine and at a lower level in colon, kidney and spleen. Green-fluorescent-protein-tagged CIDE-3 was revealed in some cytosolic corpuscles. Alternative splicing of the CIDE-3 gene was also identified by reverse transcription PCR, revealing that two transcripts, CIDE-3 and CIDE-3α, were present in HepG2 and A375 cells. CIDE-3 comprised a full-length open reading frame with 238 amino acids; in CIDE-3α exon 3 was deleted and it encoded a protein of 164 amino acids. Interestingly the CIDE-3α isoform still kept the apoptosis-inducing activity and showed the same pattern of subcellular localization as CIDE-3. Consistent with its chromosome localization at 3p25, a region associated with high frequency loss of heterozygosity in many tumours, CIDE-3 may play an important role in prevention of tumorigenesis.


1994 ◽  
Vol 14 (2) ◽  
pp. 1017-1025
Author(s):  
Z Hong ◽  
P Mann ◽  
N H Brown ◽  
L E Tran ◽  
K J Shaw ◽  
...  

k9 killer toxin from Hansenula mrakii was used to select a number of resistant mutants from Saccharomyces cerevisiae. Preliminary biochemical and genetic studies showed that some of them acquired structural defects in the cell wall. One of these mutants, the knr4-1 mutant, displays a number of cell wall defects, including osmotic sensitivity; sensitivity to cercosporamide, a known antifungal agent; and resistance to Zymolyase, a (1,3)-beta-glucanase. We report here the isolation and analysis of the KNR4 gene. DNA sequence analysis revealed an uninterrupted open reading frame which contains five potential start codons. The longest coding template encodes a protein of 505 amino acids with a calculated molecular mass of 57,044 Da. A data base search revealed 100% identity with a nuclear protein, SMI1p. Disruption of the KNR4 locus does not result in cell death; however, it leads to reduced levels of both (1,3)-beta-glucan synthase activity and (1,3)-beta-glucan content in the cell wall. The gene was mapped to the right arm of chromosome VII.


2002 ◽  
Vol 48 (11) ◽  
pp. 1008-1016 ◽  
Author(s):  
Rongji Chen ◽  
Arvind A Bhagwat ◽  
Robert Yaklich ◽  
Donald L Keister

Previously, we identified two genes in Bradyrhizobium japonicum (ndvB, ndvC) that are required for cyclic β-(1[Formula: see text]3),(1[Formula: see text]6)-D-glucan synthesis and successful symbiotic interaction with soybean (Glycine max). In this study, we report a new open reading frame (ORF1) located in the intergenic region between ndvB and ndvC, which is essential for β-glucan synthesis and effective nodulation of G. max. This new gene is designated ndvD (nodule development). The ndvD translation product has a predicted molecular mass of 26.4 kDa with one transmembrane domain. Genetic experiments involving gene deletion, Tn5 insertion, and gene complementation revealed that the mutation of ndvD generated pleiotropic phenotypes, including hypoosmotic sensitivity, reduced motility, and defects in conjugative gene transfer, in addition to symbiotic ineffectiveness. Although deficient in in vivo β-glucan synthesis, membrane preparations from the ndvD mutant synthesized neutral β-glucans in vitro. Therefore, ndvD does not appear to be a structural gene for β-glucan synthesis. Our hypothesis for the mechanism of β-(1[Formula: see text]3),(1[Formula: see text]6)-D-glucan synthesis is presented. Key Words: β-glucans,Bradyrhizobium, soybean, nitrogen fixation.


Sign in / Sign up

Export Citation Format

Share Document