scholarly journals tRNA Synthetase Mutants of Escherichia coli K-12 Are Resistant to the Gyrase Inhibitor Novobiocin

1999 ◽  
Vol 181 (9) ◽  
pp. 2979-2983 ◽  
Author(s):  
Jovanovic Milija ◽  
Mirjana Lilic ◽  
Radmila Janjusevic ◽  
Goran Jovanovic ◽  
Dragutin J. Savic

ABSTRACT In previous studies we demonstrated that mutations in the genescysB, cysE, and cls(nov) affect resistance of Escherichia coli to novobiocin (J. Rakonjac, M. Milic, and D. J. Savic, Mol. Gen. Genet. 228:307–311, 1991; R. Ivanisevic, M. Milic, D. Ajdic, J. Rakonjac, and D. J. Savic, J. Bacteriol. 177:1766–1771, 1995). In this work we expand this list with mutations in rpoN (the gene for RNA polymerase subunit ς54) and the tRNA synthetase genes alaS, argS, ileS, and leuS. Similarly to resistance to the penicillin antibiotic mecillinam, resistance to novobiocin of tRNA synthetase mutants appears to depend upon the RelA-mediated stringent response. However, at this point the overlapping pathways of mecillinam and novobiocin resistance diverge. Under conditions of stringent response induction, either by the presence of tRNA synthetase mutations or by constitutive production of RelA protein, inactivation of thecls gene diminishes resistance to novobiocin but not to mecillinam.

2021 ◽  
Author(s):  
Helen Camakaris ◽  
Ji Yang ◽  
Tadashi Fujii ◽  
James Pittard

A novel selection was developed for RpoA α-CTD mutants altered in activation by the TyrR regulatory protein of E. coli K-12. This allowed the identification of an aspartate to asparagine substitution in residue 250 (DN250) as an Act - mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and substitutions DR250, RE310 and RD310 were all shown to be defective in activation. None of these mutations caused defects in UP regulation. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. TyrR Mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77 and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act - tyrR mutants were isolated in an rpoA + strain, adding positions R77, D97, K101, D118, R119, R121 and E141 to known residues, S95 and D103, and defining the ‘activation patch’ on the NTD of TyrR. These results support a model for activation of TyrR-regulated genes where the ‘activation patch’ on the TyrR NTD interacts with the ‘TyrR-specific patch’ on the αCTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed, and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants, as Activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene TyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence, and important plant interactions.


2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Michael J. Gray

ABSTRACTProduction of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis inEscherichia coli. However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCEProduction of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress inEscherichia coliand demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Stine Vang Nielsen ◽  
Kathryn Jane Turnbull ◽  
Mohammad Roghanian ◽  
Rene Bærentsen ◽  
Maja Semanjski ◽  
...  

ABSTRACTType II toxin-antitoxin (TA) modules encode a stable toxin that inhibits cell growth and an unstable protein antitoxin that neutralizes the toxin by direct protein-protein contact.hipBAofEscherichia colistrain K-12 codes for HipA, a serine-threonine kinase that phosphorylates and inhibits glutamyl-tRNA synthetase. Induction ofhipAinhibits charging of glutamyl-tRNA that, in turn, inhibits translation and induces RelA-dependent (p)ppGpp synthesis and multidrug tolerance. Here, we describe the discovery of a three-component TA gene family that encodes toxin HipT, which exhibits sequence similarity with the C-terminal part of HipA. A genetic screening revealed thattrpSin high copy numbers suppresses HipT-mediated growth inhibition. We show that HipT ofE. coliO127 is a kinase that phosphorylates tryptophanyl-tRNA synthetasein vitroat a conserved serine residue. Consistently, induction ofhipTinhibits cell growth and stimulates production of (p)ppGpp. The gene immediately upstream fromhipT, calledhipS, encodes a small protein that exhibits sequence similarity with the N terminus of HipA. HipT kinase was neutralized by cognate HipSin vivo, whereas the third component, HipB, encoded by the first gene of the operon, did not counteract HipT kinase activity. However, HipB augmented the ability of HipS to neutralize HipT. Analysis of two additionalhipBST-homologous modules showed that, indeed, HipS functions as an antitoxin in these cases also. Thus,hipBSTconstitutes a novel family of tricomponent TA modules wherehipAhas been split into two genes,hipSandhipT, that function as a novel type of TA pair.IMPORTANCEBacterial toxin-antitoxin (TA) modules confer multidrug tolerance (persistence) that may contribute to the recalcitrance of chronic and recurrent infections. The first high-persister gene identified washipAofEscherichia colistrain K-12, which encodes a kinase that inhibits glutamyl-tRNA synthetase. ThehipAgene encodes the toxin of thehipBATA module, whilehipBencodes an antitoxin that counteracts HipA. Here, we describe a novel, widespread TA gene family,hipBST, that encodes HipT, which exhibits sequence similarity with the C terminus of HipA. HipT is a kinase that phosphorylates tryptophanyl-tRNA synthetase and thereby inhibits translation and induces the stringent response. Thus, this new TA gene family may contribute to the survival and spread of bacterial pathogens.


1975 ◽  
Vol 21 (6) ◽  
pp. 754-758 ◽  
Author(s):  
John B. Armstrong ◽  
John A. Fairfield

Six methionine auxotrophs were isolated from an E. coli K-12 strain which required up to 100 times as much methionine for growth as a conventional auxotroph. In these mutants, the methionyl-tRNA synthetase had an increased Km for methionine. The Km value for the mutants ranged from 0.48 to 1.63 mM, compared to 0.078 mM for the wild type. The Km (methionine) for S-adenosyl methionine synthetase was not altered.


2007 ◽  
Vol 190 (4) ◽  
pp. 1284-1289 ◽  
Author(s):  
David J. Lee ◽  
Stephen J. W. Busby ◽  
Lars F. Westblade ◽  
Brian T. Chait

ABSTRACT Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the “core” E. coli genome.


2021 ◽  
Author(s):  
Kanika Jain ◽  
Tyler H. Stanage ◽  
Elizabeth A. Wood ◽  
Michael M. Cox

Deletion of the entire gene encoding the RarA protein of Escherichia coli results in a growth defect and additional deficiencies that were initially ascribed to a lack of RarA function. Further work revealed that most of the effects reflected the presence of sequences in the rarA gene that affect expression of the downstream gene, serS. The serS gene encodes the seryl aminoacyl-tRNA synthetase. Decreases in the expression of serS can trigger the stringent response. The sequences that affect serS expression are located in the last 15 nucleotides of the rarA gene.


Sign in / Sign up

Export Citation Format

Share Document