scholarly journals Affinity Isolation and I-DIRT Mass Spectrometric Analysis of the Escherichia coli O157:H7 Sakai RNA Polymerase Complex

2007 ◽  
Vol 190 (4) ◽  
pp. 1284-1289 ◽  
Author(s):  
David J. Lee ◽  
Stephen J. W. Busby ◽  
Lars F. Westblade ◽  
Brian T. Chait

ABSTRACT Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the “core” E. coli genome.

2021 ◽  
Author(s):  
Donovan H Parks ◽  
Maria Chuvochina ◽  
Peter R Reeves ◽  
Scott A Beatson ◽  
Philip Hugenholtz

Members of the genus Shigella have high genomic similarity to Escherichia coli and are often considered to be atypical members of this species. In an attempt to retain Shigella species as recognizable entities, they were reclassified as Escherichia species in the Genome Taxonomy Database (GTDB) using an operational average nucleotide identity (ANI)-based approach nucleated around type strains. This resulted in nearly 80% of E. coli genomes being reclassified to new species including the common laboratory strain E. coli K-12 (to 'E. flexneri') because it is more closely related to the type strain of Shigella flexneri than it is to the type strain of E. coli. Here we resolve this conundrum by treating Shigella species as later heterotypic synonyms of E. coli, present evidence supporting this reclassification, and show that assigning E. coli/Shigella strains to a single species is congruent with the GTDB-adopted genomic species definition.


Author(s):  
Pierre Millard ◽  
Julien Pérochon ◽  
Fabien Letisse

L-rhamnose and L-fucose are the two main 6-deoxyhexoses Escherichia coli can use as carbon and energy sources. Deoxyhexose metabolism leads to the formation of lactaldehyde whose fate depends on oxygen availability. Under anaerobic conditions, lactaldehyde is reduced to 1,2-propanediol whereas under aerobic condition, it should be oxidised into lactate and then channelled into the central metabolism. However, although this all-or-nothing view is accepted in the literature, it seems overly simplistic since propanediol is also reported to be present in the culture medium during aerobic growth on L-fucose. To clarify the functioning of 6-deoxyhexose sugar metabolism, a quantitative metabolic analysis was performed to determine extra- and intracellular fluxes in E. coli K-12 MG1655 (a laboratory strain) and in E. coli Nissle 1917 (a human commensal strain) during anaerobic and aerobic growth on L-rhamnose and L-fucose. As expected, lactaldehyde is fully reduced to 1,2-propanediol in anoxic conditions allowing complete reoxidation of the NADH produced by glyceraldehyde-3-phosphate-dehydrogenase. We also found that net ATP synthesis is ensured by acetate production. More surprisingly, lactaldehyde is also primarily reduced into 1,2-propanediol under aerobic conditions. For growth on L-fucose, 13 C-metabolic flux analysis revealed a large excess of available energy, highlighting the need to better characterize ATP utilization processes. The probiotic E. coli Nissle 1917 strain exhibits similar metabolic traits, indicating that they are not the result of the K-12 strain’s prolonged laboratory use. IMPORTANCE E. coli ’s ability to survive, grow and colonize the gastrointestinal tract stems from its use of partially digested food and hydrolysed glycosylated proteins (mucins) from the intestinal mucus layer as substrates. These include L-fucose and L-rhamnose, two 6-deoxyhexose sugars, whose catabolic pathways have been established by genetic and biochemical studies. However, the functioning of these pathways has only partially been elucidated. Our quantitative metabolic analysis provides a comprehensive picture of 6-deoxyhexose sugar metabolism in E. coli under anaerobic and aerobic conditions. We found that 1,2-propanediol is a major by-product under both conditions, revealing the key role of fermentative pathways in 6-deoxyhexose sugar metabolism. This metabolic trait is shared by both E. coli strains studied here, a laboratory strain and a probiotic strain. Our findings add to our understanding of E. coli ’s metabolism and of its functioning in the bacterium’s natural environment.


2002 ◽  
Vol 70 (10) ◽  
pp. 5503-5511 ◽  
Author(s):  
Anne-Beatrice Blanc-Potard ◽  
Colin Tinsley ◽  
Isabel Scaletsky ◽  
Chantal Le Bouguenec ◽  
Julie Guignot ◽  
...  

ABSTRACT Diffusely adhering Escherichia coli strains harboring Afa/Dr adhesins (Afa/Dr DAEC) have been associated with diarrhea and urinary tract infections (UTIs). The present work is the first extensive molecular study of a Afa/Dr DAEC strain using the representational difference analysis technique. We have searched for DNA sequences present in strain C1845, recovered from a diarrheagenic child, but absent from a nonpathogenic K-12 strain. Strain C1845 harbors part of a pathogenicity island (PAICFT073) and several iron transport systems found in other E. coli pathovars. We did not find genes encoding factors known to subvert host cell proteins, such as type III secretion system or effector proteins. Several C1845-specific sequences are homologous to putative virulence genes or show no homology with known sequences, and we have analyzed their distribution among Afa/Dr and non-Afa/Dr clinical isolates and among strains from the E. coli Reference Collection. Three C1845-specific sequences (MO30, S109, and S111) have a high prevalence (77 to 80%) among Afa/Dr strains and a low prevalence (12 to 23%) among non-Afa/Dr strains. In addition, our results indicate that strain IH11128, an Afa/Dr DAEC strain recovered from a patient with a UTI, is genetically closely related to strain C1845.


2018 ◽  
Vol 6 (21) ◽  
Author(s):  
Yasufumi Matsumura ◽  
Gisele Peirano ◽  
Johann D. D. Pitout

ABSTRACT We report here the complete genome sequence of Escherichia coli J53, which is used as a recipient in conjugation experiments and is a laboratory strain derived from E. coli K-12. This genome sequence will help in the development of a comprehensive genetic analysis of conjugative elements.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Yasufumi Matsumura ◽  
Masaki Yamamoto ◽  
Satoshi Nakano ◽  
Miki Nagao

ABSTRACT We report here the complete genome sequence of Escherichia coli ME8067, an azide-resistant laboratory strain used for conjugation experiments. The ME8067 genome was closely related to E. coli strain K-12 substrain W3110. This genome sequence will support further genetic analysis of conjugative elements.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Anna Allué-Guardia ◽  
Emmanuel C. Nyong ◽  
Sara S. K. Koenig ◽  
Sean M. Vargas ◽  
James L. Bono ◽  
...  

Escherichia coli strain C600 is a prototypical K-12 derived laboratory strain which has been broadly used for molecular microbiology and bacterial physiology studies since its isolation in 1954. Here, we present the closed genome sequence of E. coli strain C600, retrieved from the American Type Culture Collection (ATCC 23724).


2005 ◽  
Vol 187 (8) ◽  
pp. 2609-2617 ◽  
Author(s):  
R. Gary Sawers

ABSTRACT FNR is a global transcriptional regulator that controls anaerobic gene expression in Escherichia coli. Through the use of a number of approaches it was shown that fnr gene expression is reduced approximately three- to fourfold in E. coli strain MC4100 compared with the results seen with strain MG1655. This reduction in fnr expression is due to the insertion of IS5 (is5F) in the regulatory region of the gene at position −41 relative to the transcription initiation site. Transcription of the fnr gene nevertheless occurs from its own promoter in strain MC4100, but transcript levels are reduced approximately fourfold compared with those seen with strain MG1655. Remarkably, in strains bearing is5F the presence of Hfq prevents IS5-dependent transcriptional silencing of fnr expression. Thus, an hfq mutant of MC4100 is devoid of FNR protein and has the phenotype of an fnr mutant. In strain MG1655, or a derivative of MC4100 lacking is5F, mutation of hfq had no effect on fnr transcript levels. This finding indicates that IS5 mediates the effect of Hfq on fnr expression in MC4100. Western blot analysis revealed that cellular levels of FNR were reduced threefold in strain MC4100 compared with strain MG1655 results. A selection of FNR-dependent genes fused to lacZ were analyzed for the effects of reduced FNR levels on anaerobic gene expression. Expression of some operons, e.g., focA-pfl and fdnGHJI, was unaffected by reduction in the level of FNR, while the expression of other genes such as ndh and nikA was clearly affected.


mSystems ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Kaneyoshi Yamamoto ◽  
Yuki Yamanaka ◽  
Tomohiro Shimada ◽  
Paramita Sarkar ◽  
Myu Yoshida ◽  
...  

The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β′, of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.


2006 ◽  
Vol 188 (10) ◽  
pp. 3582-3588 ◽  
Author(s):  
Andreas Reisner ◽  
Brigitte M. Höller ◽  
Søren Molin ◽  
Ellen L. Zechner

ABSTRACT Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition of conjugation genes present initially in the isolate, and (iii) was inhibited through the presence in the cocultured K-12 strain of a related conjugative plasmid, presumably due to surface exclusion functions. Synergistic effects of cocultivation of pairs of natural isolates were also observed, demonstrating that biofilm promotion in this system is not dependent on the laboratory strain and that the described model system could provide relevant insights on mechanisms of biofilm development in natural E. coli populations.


2013 ◽  
Vol 103 (4) ◽  
pp. 333-340 ◽  
Author(s):  
Kathryn M. Wright ◽  
Sean Chapman ◽  
Kara McGeachy ◽  
Sonia Humphris ◽  
Emma Campbell ◽  
...  

The foodborne pathogen Escherichia coli O157:H7 is increasingly associated with fresh produce (fruit and vegetables). Bacterial colonization of fresh produce plants can occur to high levels on the external tissue but bacteria have also been detected within plant tissue. However, questions remain about the extent of internalization, its molecular basis, and internal location of the bacteria. We have determined the extent of internalization of E. coli O157:H7 in live spinach and lettuce plants and used high-resolution microscopy to examine colony formation in roots and pathways to internalization. E. coli O157:H7 was found within internal tissue of both produce species. Colonization occurred within the apoplast between plant cells. Furthermore, colonies were detected inside the cell wall of epidermal and cortical cells of spinach and Nicotiana benthamiana roots. Internal colonization of epidermal cells resembled that of the phytopathogen Pectobacterium atrosepticum on potato. In contrast, only sporadic cells of the laboratory strain of E. coli K-12 were found on spinach, with no internal bacteria evident. The data extend previous findings that internal colonization of plants appears to be limited to a specific group of plant-interacting bacteria, including E. coli O157:H7, and demonstrates its ability to invade the cells of living plants.


Sign in / Sign up

Export Citation Format

Share Document