scholarly journals Regulation of the Escherichia coli K5 Capsule Gene Cluster: Evidence for the Roles of H-NS, BipA, and Integration Host Factor in Regulation of Group 2 Capsule Gene Clusters in Pathogenic E. coli

2000 ◽  
Vol 182 (10) ◽  
pp. 2741-2745 ◽  
Author(s):  
Sonya Rowe ◽  
Nigel Hodson ◽  
Gary Griffiths ◽  
Ian S. Roberts

ABSTRACT The expression of Escherichia coli group 2 capsules (K antigens) is temperature dependent, with capsules only being expressed at temperatures above 20°C. Thermoregulation is at the level of transcription, with no detectable transcription at 20°C. Using theE. coli K5 capsule gene cluster as a model system, we have shown that the nucleoid-associated protein H-NS plays a dual role in regulating transcription of group 2 capsule gene clusters at 37 and 20°C. At 37°C H-NS is required for maximal transcription of group 2 capsule gene clusters, whereas at 20°C H-NS functions to repress transcription. The BipA protein, previously identified as a tyrosine-phosphorylated GTPase and essential for virulence in enteropathogenic E. coli, was shown to play a similar role to H-NS in regulating transcription at 37 and 20°C. The binding of integration host factor (IHF) to the region 1 promoter was necessary to potentiate transcription at 37°C and IHF binding demonstrated by bandshift assays. The IHF binding site was 3′ to the site of transcription initiation, suggesting that sequences in the 5′ end of the first gene (kpsF) in region 1 may play a role in regulating transcription from this promoter at 37°C. Two additionalcis-acting sequences, conserved in both the region 1 and 3 promoters, were identified, suggesting a role for these sequences in the coordinate regulation of transcription from these promoters. These results indicate that a complex regulatory network involving a number of global regulators exists for the control of expression of group 2 capsules in E. coli.

2007 ◽  
Vol 282 (46) ◽  
pp. 33326-33335 ◽  
Author(s):  
David Corbett ◽  
Hayley J. Bennett ◽  
Hamdia Askar ◽  
Jeffrey Green ◽  
Ian S. Roberts

In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.


2006 ◽  
Vol 188 (21) ◽  
pp. 7449-7456 ◽  
Author(s):  
Douglas F. Browning ◽  
David J. Lee ◽  
Alan J. Wolfe ◽  
Jeffrey A. Cole ◽  
Stephen J. W. Busby

ABSTRACT The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position −41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position −54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position −74.5. The E. coli acs gene is transcribed from a divergent promoter upstream from the nrf operon promoter. Transcription from the major acsP2 promoter is dependent on the cyclic AMP receptor protein and is modulated by IHF and Fis binding at multiple sites. We show that IHF binding to one of these sites, located at position −127 with respect to the nrf promoter, has a positive effect on nrf promoter activity. This activation is dependent on the face of the DNA helix, independent of IHF binding at other locations, and found only when NarL/NarP are not bound at position −74.5. Binding of NarL/NarP appears to insulate the nrf promoter from the effects of IHF. The acs-nrf regulatory region is conserved in other pathogenic E. coli strains and related enteric bacteria but differs in Salmonella enterica serovar Typhimurium.


2020 ◽  
Vol 202 (10) ◽  
Author(s):  
Yannick R. Brunet ◽  
Christophe S. Bernard ◽  
Eric Cascales

ABSTRACT The type VI secretion system (T6SS) is a weapon for delivering effectors into target cells that is widespread in Gram-negative bacteria. The T6SS is a highly versatile machine, as it can target both eukaryotic and prokaryotic cells, and it has been proposed that T6SSs are adapted to the specific needs of each bacterium. The expression of T6SS gene clusters and the activation of the secretion apparatus are therefore tightly controlled. In enteroaggregative Escherichia coli (EAEC), the sci1 T6SS gene cluster is subject to a complex regulation involving both the ferric uptake regulator (Fur) and DNA adenine methylase (Dam)-dependent DNA methylation. In this study, an additional, internal, promoter was identified within the sci1 gene cluster using +1 transcriptional mapping. Further analyses demonstrated that this internal promoter is controlled by a mechanism strictly identical to that of the main promoter. The Fur binding box overlaps the −10 transcriptional element and a Dam methylation site, GATC-32. Hence, the expression of the distal sci1 genes is repressed and the GATC-32 site is protected from methylation in iron-rich conditions. The Fur-dependent protection of GATC-32 was confirmed by an in vitro methylation assay. In addition, the methylation of GATC-32 negatively impacted Fur binding. The expression of the sci1 internal promoter is therefore controlled by iron availability through Fur regulation, whereas Dam-dependent methylation maintains a stable ON expression in iron-limited conditions. IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Its expression and activation therefore need to be tightly regulated. Here, we identified an internal promoter within the sci1 T6SS gene cluster in enteroaggregative E. coli. We show that this internal promoter is controlled by Fur and Dam-dependent methylation. We further demonstrate that Fur and Dam compete at the −10 transcriptional element to finely tune the expression of T6SS genes. We propose that this elegant regulatory mechanism allows the optimum production of the T6SS in conditions where enteroaggregative E. coli encounters competing species.


2005 ◽  
Vol 187 (23) ◽  
pp. 8164-8171 ◽  
Author(s):  
Diana Ideses ◽  
Uri Gophna ◽  
Yossi Paitan ◽  
Roy R. Chaudhuri ◽  
Mark J. Pallen ◽  
...  

ABSTRACT The type III secretion system (T3SS) is an important virulence factor used by several gram-negative bacteria to deliver effector proteins which subvert host cellular processes. Enterohemorrhagic Escherichia coli O157 has a well-defined T3SS involved in attachment and effacement (ETT1) and critical for virulence. A gene cluster potentially encoding an additional T3SS (ETT2), which resembles the SPI-1 system in Salmonella enterica, was found in its genome sequence. The ETT2 gene cluster has since been found in many E. coli strains, but its in vivo role is not known. Many of the ETT2 gene clusters carry mutations and deletions, raising the possibility that they are not functional. Here we show the existence in septicemic E. coli strains of an ETT2 gene cluster, ETT2sepsis, which, although degenerate, contributes to pathogenesis. ETT2sepsis has several premature stop codons and a large (5 kb) deletion, which is conserved in 11 E. coli strains from cases of septicemia and newborn meningitis. A null mutant constructed to remove genes coding for the putative inner membrane ring of the secretion complex exhibited significantly reduced virulence. These results are the first demonstration of the importance of ETT2 for pathogenesis.


2008 ◽  
Vol 191 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
Peng Xue ◽  
David Corbett ◽  
Marie Goldrick ◽  
Clare Naylor ◽  
Ian S. Roberts

ABSTRACT Escherichia coli group 2 capsule gene clusters are temperature regulated, being expressed at 37°C but not at 20°C. Expression is regulated at the level of transcription by two convergent promoters, PR1 and PR3. In this paper, we show that regulation of transcription from PR3 involves a number of novel features including H-NS, SlyA, and a large 741-bp 5′ untranslated region (UTR). H-NS represses transcription from PR3 at 20°C and binds both 5′ and 3′ of the transcription start site. The 3′ downstream regulatory element (DRE) was essential for temperature-dependent H-NS repression. At 37°C, SlyA activates transcription independent of H-NS but maximal transcription requires H-NS. The UTR is present between the transcription start site and the first gene in the operon, kpsM. We demonstrate that the UTR, as well as containing the H-NS DRE, functions to moderate the extent of transcription that reaches kpsM and allows the binding of antitermination factor RfaH.


2002 ◽  
Vol 184 (10) ◽  
pp. 2620-2625 ◽  
Author(s):  
Lei Wang ◽  
Sandy Huskic ◽  
Adam Cisterne ◽  
Deborah Rothemund ◽  
Peter R. Reeves

ABSTRACT Escherichia coli O55 is an important antigen which is often associated with enteropathogenic E. coli clones. We sequenced the genes responsible for its synthesis and identified genes for O-antigen polymerase, O-antigen flippase, four enzymes involved in GDP-colitose synthesis, and three glycosyltransferases, all by comparison with known genes. Upstream of the normal O-antigen region there is a gne gene, which encodes a UDP-GlcNAc epimerase for converting UDP-GlcNAc to UDP-GalNAc and is essential for O55 antigen synthesis. The O55 gne product has only 20 and 26% identity to the gne genes of Pseudomonas aeruginosa and E. coli O113, respectively. We also found evidence for the O55 gene cluster's having evolved from another gene cluster by gain and loss of genes. Only three of the GDP-colitose pathway genes are in the usual location, the other two being separated, although nearby. It is thought that the E. coli O157:H7 clone evolved from the O55:H7 clone in part by transfer of the O157 gene cluster into an O55 lineage. Comparison of genes flanking the O-antigen gene clusters of the O55:H7 and O157:H7 clones revealed one recombination site within the galF gene and located the other between the hisG and amn genes. Genes outside the recombination sites are 99.6 to 100% identical in the two clones, while most genes thought to have transferred with the O157 gene cluster are 95 to 98% identical.


Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1642-1649 ◽  
Author(s):  
Bin Liu ◽  
Andrei V. Perepelov ◽  
Dan Li ◽  
Sof'ya N. Senchenkova ◽  
Yanfang Han ◽  
...  

O-antigen is a component of the outer membrane of Gram-negative bacteria and is one of the most variable cell surface constituents, leading to major antigenic variability. The O-antigen forms the basis for bacterial serotyping. In this study, the O-antigen structure of Salmonella O66 was established, which differs from the known O-antigen structure of Escherichia coli O166 only in one linkage (most likely the linkage between the O-units) and O-acetylation. The O-antigen gene clusters of Salmonella O66 and E. coli O166 were found to have similar organizations, the only exception being that in Salmonella O66, the wzy gene is replaced by a non-coding region. The function of the wzy gene in E. coli O166 was confirmed by the construction and analysis of deletion and trans-complementation mutants. It is proposed that a functional wzy gene located outside the O-antigen gene cluster is involved in Salmonella O66 O-antigen biosynthesis, as has been reported previously in Salmonella serogroups A, B and D1. The sequence identity for the corresponding genes between the O-antigen gene clusters of Salmonella O66 and E. coli O166 ranges from 64 to 70 %, indicating that they may originate from a common ancestor. It is likely that after the species divergence, Salmonella O66 got its specific O-antigen form by inactivation of the wzy gene located in the O-antigen gene cluster and acquisition of two new genes (a wzy gene and a prophage gene for O-acetyl modification) both residing outside the O-antigen gene cluster.


2007 ◽  
Vol 189 (23) ◽  
pp. 8528-8536 ◽  
Author(s):  
Céline Plainvert ◽  
Philippe Bidet ◽  
Chantal Peigne ◽  
Valérie Barbe ◽  
Claudine Médigue ◽  
...  

ABSTRACT A new highly pathogenic clone of Escherichia coli meningitis strains harboring the unusual serogroup O45 has recently emerged in France. To gain insight into the pathogenicity of this new clone, we investigated the possible role of antigen O45 in the virulence of strain S88 (O45:K1:H7), representative of this emerging clone. We first showed that the S88 O-antigen gene cluster sequence differs from that of O45 in the reference strain E. coli 96-3285, suggesting that the two O45 polysaccharides, while probably sharing a community of epitopes, represent two different antigens. The unique functional organization of the two O-antigen gene clusters and the low DNA sequence homology of the orthologous genes suggest that the two loci originated from a common ancestor and have since undergone multiple recombination events. Phylogenetic analysis based on the flanking gene gnd sequences indicates that the S88 antigen O45 (O45S88) gene cluster may have been acquired, at least in part, from another member of the Enterobacteriaceae. Mutagenesis of the O45S88 antigen gene cluster was used for functional analysis of the loci and revealed the crucial role of the O polysaccharide in S88 virulence in a neonatal rat meningitis model. We also developed a PCR method to specifically identify the O45S88 antigen gene cluster. Together, our findings suggest that horizontal acquisition of a new O-antigen gene cluster, at least partly from another species, may have been a key event in the emergence and virulence of the E. coli O45:K1:H7 clone in France.


2004 ◽  
Vol 50 (4) ◽  
pp. 299-302 ◽  
Author(s):  
Slade O Jensen ◽  
Peter R Reeves

Escherichia coli O14:K7 is a rough strain, lacking a typical O antigen, in which the enterobacterial common antigen is attached to the lipopolysaccharide core. The rough phenotype was previously mapped to the O antigen gene cluster; however, the nature of the nonfunctional locus was not defined. In this study, we have shown that the O antigen gene cluster of an O14:K7 type strain (Su4411/41) was most likely deleted via homologous recombination between the GDP–mannose pathway genes (manB and manC) of the colanic acid and O antigen gene clusters. A similar recombination event has previously been inferred for the deletion of E. coli Sonnei chromosomal O antigen genes. Therefore, recombination between the GDP–mannose pathway genes provides a convenient mechanism for the deletion of O antigen genes, which may occur if the typical O antigen becomes redundant.Key words: colanic acid, enterobacterial common antigen, GDP–mannose pathway, O14:K7, O antigen.


Sign in / Sign up

Export Citation Format

Share Document