enterobacterial common antigen
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 17)

H-INDEX

29
(FIVE YEARS 2)

mBio ◽  
2021 ◽  
Author(s):  
Ashutosh K. Rai ◽  
Joseph F. Carr ◽  
David E. Bautista ◽  
Wei Wang ◽  
Angela M. Mitchell

Enterobacterial common antigen (ECA) is a conserved polysaccharide present on the surface of the outer membrane (OM) and in the periplasm of the many pathogenic bacteria belonging to Enterobacterales , including Klebsiella pneumoniae , Salmonella enterica , and Yersinia pestis . As the OM is a permeability barrier that excludes many antibiotics, synthesis pathways for OM molecules are promising targets for antimicrobial discovery.


Author(s):  
Colleen R. Eade ◽  
Timothy W. Wallen ◽  
Claire E. Gates ◽  
Cassidy L. Oliverio ◽  
Beth A. Scarbrough ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245727
Author(s):  
Manish Ranjan ◽  
Devanshi Khokhani ◽  
Sanjeeva Nayaka ◽  
Suchi Srivastava ◽  
Zachary P. Keyser ◽  
...  

The pectinolytic genus Dickeya (formerly Erwinia chrysanthemi) comprises numerous pathogenic species which cause diseases in various crops and ornamental plants across the globe. Their pathogenicity is governed by complex multi-factorial processes of adaptive virulence gene regulation. Extracellular polysaccharides and lipopolysaccharides present on bacterial envelope surface play a significant role in the virulence of phytopathogenic bacteria. However, very little is known about the genomic location, diversity, and organization of the polysaccharide and lipopolysaccharide biosynthetic gene clusters in Dickeya. In the present study, we report the diversity and structural organization of the group 4 capsule (G4C)/O-antigen capsule, putative O-antigen lipopolysaccharide, enterobacterial common antigen, and core lipopolysaccharide biosynthesis clusters from 54 Dickeya strains. The presence of these clusters suggests that Dickeya has both capsule and lipopolysaccharide carrying O-antigen to their external surface. These gene clusters are key regulatory components in the composition and structure of the outer surface of Dickeya. The O-antigen capsule/group 4 capsule (G4C) coding region shows a variation in gene content and organization. Based on nucleotide sequence homology in these Dickeya strains, two distinct groups, G4C group I and G4C group II, exist. However, comparatively less variation is observed in the putative O-antigen lipopolysaccharide cluster in Dickeya spp. except for in Dickeya zeae. Also, enterobacterial common antigen and core lipopolysaccharide biosynthesis clusters are present mostly as conserved genomic regions. The variation in the O-antigen capsule and putative O-antigen lipopolysaccharide coding region in relation to their phylogeny suggests a role of multiple horizontal gene transfer (HGT) events. These multiple HGT processes might have been manifested into the current heterogeneity of O-antigen capsules and O-antigen lipopolysaccharides in Dickeya strains during its evolution.


2021 ◽  
Vol 22 (2) ◽  
pp. 701
Author(s):  
Tomasz K Gozdziewicz ◽  
Anna Maciejewska ◽  
Alona Tsybulska ◽  
Czeslaw Lugowski ◽  
Jolanta Lukasiewicz

Enterobacterial common antigen (ECA) is a conserved antigen expressed by enterobacteria. It is built by trisaccharide repeating units: →3)-α-D-Fucp4NAc-(1→4)-β-D-ManpNAcA-(1→4)-α-D-GlcpNAc-(1→ and occurs in three forms: as surface-bound linear polysaccharides linked to a phosphoglyceride (ECAPG) or lipopolysaccharide − endotoxin (ECALPS), and cyclic form (ECACYC). ECA maintains, outer membrane integrity, immunogenicity, and viability of enterobacteria. A supernatant obtained after LPS ultracentrifugation was reported as a source for ECA isolation, but it has never been assessed for detailed composition besides ECACYC. We used mild acid hydrolysis and gel filtration, or zwitterionic-hydrophilic interaction liquid (ZIC®HILIC) chromatography combined with mass spectrometry for purification, fractionation, and structural analysis of rough Shigella sonnei and Escherichia coli R1 and K12 crude LPS preparations. Presented work is the first report concerning complex characteristic of all ECA forms present in LPS-derived supernatants. We demonstrated high heterogeneity of the supernatant-derived ECA that contaminate LPS purified by ultracentrifugation. Not only previously reported O-acetylated tetrameric, pentameric, and hexameric ECACYC have been identified, but also devoid of lipid moiety linear ECA built from 7 to 11 repeating units. Described results were common for all selected strains. The origin of linear ECA is discussed against the current knowledge about ECAPG and ECALPS.


2020 ◽  
Author(s):  
Vincenzo Leo ◽  
Elizabeth Tran ◽  
Renato Morona

The ability of bacteria to synthesise complex polysaccharide chains at a controlled number of repeating units has wide implications for a range of biological activities that include: symbiosis, biofilm formation and immune system avoidance. Complex polysaccharide chains such as the O antigen (Oag) component of lipopolysaccharide and the enterobacterial common antigen (ECA) are synthesised by the most common polysaccharide synthesis pathway used in bacteria, known as the Wzy-dependent pathway. The Oag and ECA are polymerized into chains via the inner membrane proteins WzyB and WzyE, respectively, while the respective co-polymerases WzzB and WzzE modulate the number of repeat units in the chains or “the modal length” of the polysaccharide via a hypothesised interaction. Our data shows for the first time “cross-talk” between Oag and ECA synthesis in that WzzE is able to partially regulate Oag modal length via a potential interaction with WzyB. To investigate this, one or both of the transmembrane regions (TM1 and TM2) of WzzE and WzzB were swapped creating six chimera proteins. Several chimeric proteins showed significant increases Oag modal length control, while others reduced control. Additionally, co-purification experiments show an interaction between WzyB and WzzB for the first time without the use of a chemical cross-linker, and a novel interaction between WzyB and WzzE. These results suggest the TM2 region of Wzz proteins plays a critical role in Oag and ECA modal length control, presumably via the interaction with respective Wzy proteins, thus providing insight into the complex mechanism underlying the control of polysaccharide biosynthesis. Importance Bacteria synthesise complex polysaccharide chains at a controlled number of repeating units, this has wide implications for a range of bacterial activities involved in virulence. Examples of complex polysaccharide chains include, the O antigen (Oag) component of lipopolysaccharide and the enterobacterial common antigen (ECA), both of these examples are predominantly synthesised by their own independent Wzy-dependent pathway. Our data show for the first time “cross-talk” between Oag and ECA synthesis and identifies novel physical protein-protein interactions between proteins in these systems. These findings further the understanding of how the system functions to control polysaccharide chain length which has great implications for novel biotechnologies and/or the combat of bacterial diseases.


2020 ◽  
Vol 117 (52) ◽  
pp. 33549-33560
Author(s):  
T. V. Pritha Rao ◽  
Andrei Kuzminov

Thymineless death in Escherichia coli thyA mutants growing in the absence of thymidine (dT) is preceded by a substantial resistance phase, during which the culture titer remains static, as if the chromosome has to accumulate damage before ultimately failing. Significant chromosomal replication and fragmentation during the resistance phase could provide appropriate sources of this damage. Alternatively, the initial chromosomal replication in thymine (T)-starved cells could reflect a considerable endogenous dT source, making the resistance phase a delay of acute starvation, rather than an integral part of thymineless death. Here we identify such a low-molecular-weight (LMW)-dT source as mostly dTDP-glucose and its derivatives, used to synthesize enterobacterial common antigen (ECA). The thyA mutant, in which dTDP-glucose production is blocked by the rfbA rffH mutations, lacks a LMW-dT pool, the initial DNA synthesis during T-starvation and the resistance phase. Remarkably, the thyA mutant that makes dTDP-glucose and initiates ECA synthesis normally yet cannot complete it due to the rffC defect, maintains a regular LMW-dT pool, but cannot recover dTTP from it, and thus suffers T-hyperstarvation, dying precipitously, completely losing chromosomal DNA and eventually lysing, even without chromosomal replication. At the same time, its ECA+thyA parent does not lyse during T-starvation, while both the dramatic killing and chromosomal DNA loss in the ECA-deficient thyA mutants precede cell lysis. We conclude that: 1) the significant pool of dTDP-hexoses delays acute T-starvation; 2) T-starvation destabilizes even nonreplicating chromosomes, while T-hyperstarvation destroys them; and 3) beyond the chromosome, T-hyperstarvation also destabilizes the cell envelope.


2020 ◽  
Vol 114 (6) ◽  
pp. 991-1005
Author(s):  
Xiang’Er Jiang ◽  
Wee Boon Tan ◽  
Rahul Shrivastava ◽  
Deborah Chwee San Seow ◽  
Swaine Lin Chen ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6038
Author(s):  
Anna Maciejewska ◽  
Marta Kaszowska ◽  
Wojciech Jachymek ◽  
Czeslaw Lugowski ◽  
Jolanta Lukasiewicz

Enterobacterial common antigen (ECA) is a conserved surface antigen characteristic for Enterobacteriaceae. It is consisting of trisaccharide repeating unit, →3)-α-d-Fucp4NAc-(1→4)-β-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, where prevailing forms include ECA linked to phosphatidylglycerol (ECAPG) and cyclic ECA (ECACYC). Lipopolysaccharide (LPS)-associated form (ECALPS) has been proved to date only for rough Shigella sonnei phase II. Depending on the structure organization, ECA constitutes surface antigen (ECAPG and ECALPS) or maintains the outer membrane permeability barrier (ECACYC). The existence of LPS was hypothesized in the 1960–80s on the basis of serological observations. Only a few Escherichia coli strains (i.e., R1, R2, R3, R4, and K-12) have led to the generation of anti-ECA antibodies upon immunization, excluding ECAPG as an immunogen and conjecturing ECALPS as the only immunogenic form. Here, we presented a structural survey of ECALPS in E. coli R1, R2, R3, and R4 to correlate previous serological observations with the presence of ECALPS. The low yields of ECALPS were identified in the R1, R2, and R4 strains, where ECA occupied outer core residues of LPS that used to be substituted by O-specific polysaccharide in the case of smooth LPS. Previously published observations and hypotheses regarding the immunogenicity and biosynthesis of ECALPS were discussed and correlated with presented herein structural data.


Sign in / Sign up

Export Citation Format

Share Document