scholarly journals Characterization and Role of tbuX in Utilization of Toluene by Ralstonia pickettii PKO1

2000 ◽  
Vol 182 (5) ◽  
pp. 1232-1242 ◽  
Author(s):  
Hyung-Yeel Kahng ◽  
Armando M. Byrne ◽  
Ronald H. Olsen ◽  
Jerome J. Kukor

ABSTRACT The tbu regulon of Ralstonia pickettii PKO1 encodes enzymes involved in the catabolism of toluene, benzene, and related alkylaromatic hydrocarbons. The first operon in this regulon contains genes that encode the tbu pathway's initial catabolic enzyme, toluene-3-monooxygenase, as well as TbuT, the NtrC-like transcriptional activator for the entire regulon. It has been previously shown that the organization of tbuT, which is located immediately downstream of tbuA1UBVA2C, and the associated promoter (PtbuA1) is unique in that it results in a cascade type of up-regulation of tbuT in response to a variety of effector compounds. In our efforts to further characterize this unusual mode of gene regulation, we discovered another open reading frame, encoded on the strand opposite that of tbuT, 63 bp downstream of the tbuT stop codon. The 1,374-bp open reading frame, encoding a 458-amino-acid peptide, was designatedtbuX. The predicted amino acid sequence of TbuX exhibited significant similarity to several putative outer membrane proteins from aromatic hydrocarbon-degrading bacteria, as well as to FadL, an outer membrane protein needed for uptake of long-chain fatty acids inEscherichia coli. Based on sequence analysis, transcriptional and expression studies, and deletion analysis, TbuX seems to play an important role in the catabolism of toluene inR. pickettii PKO1. In addition, the expression oftbuX appears to be regulated in a manner such that low levels of TbuX are always present within the cell, whereas upon toluene exposure these levels dramatically increase, even more than those of toluene-3-monooxygenase. This expression pattern may relate to the possible role of TbuX as a facilitator of toluene entry into the cell.

Genetics ◽  
1992 ◽  
Vol 131 (3) ◽  
pp. 531-539 ◽  
Author(s):  
C Bornaes ◽  
J G Petersen ◽  
S Holmberg

Abstract The catabolic L-serine (L-threonine) dehydratase of Saccharomyces cerevisiae allows the yeast to grow on media with L-serine or L-threonine as sole nitrogen source. Previously we have cloned the CHA1 gene by complementation of a mutant, cha1, lacking the dehydratase activity. Here we present the DNA sequence of a 1,766-bp fragment of the CHA1 region encompassing an open reading frame of 1080 bp. Comparison of the predicted amino acid sequence of the CHA1 polypeptide with that of other serine/threonine dehydratases revealed several blocks of sequence homology. Thus, the amino acid sequence of rat liver serine dehydratase (SDH2) and the CHA1 polypeptide are 44% homologous allowing for conservative substitutions, while 36% similarity is found between the catabolic threonine dehydratase (tdcB) of Escherichia coli and the CHA1 protein. This strongly suggests that CHA1 is the structural gene for the yeast catabolic serine (threonine) dehydratase. S1-nuclease mapping of the CHA1 mRNA ends showed a major transcription initiation site corresponding to an untranslated leader of about 19 nucleotides, while a major polyadenylation site was located about 86 nucleotides downstream from the open reading frame. Furthermore, we have mapped the chromosomal position of the CHA1 gene to less than 0.5 kb centromere proximal to HML on the left arm of chromosome III.


1999 ◽  
Vol 181 (22) ◽  
pp. 6977-6986 ◽  
Author(s):  
Susanne Wilhelm ◽  
Jan Tommassen ◽  
Karl-Erich Jaeger

ABSTRACT A lipase-negative deletion mutant of Pseudomonas aeruginosa PAO1 still showed extracellular lipolytic activity toward short-chain p-nitrophenylesters. By screening a genomic DNA library of P. aeruginosa PAO1, an esterase gene, estA, was identified, cloned, and sequenced, revealing an open reading frame of 1,941 bp. The product ofestA is a 69.5-kDa protein, which is probably processed by removal of an N-terminal signal peptide to yield a 67-kDa mature protein. A molecular mass of 66 kDa was determined for35S-labeled EstA by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The amino acid sequence of EstA indicated that the esterase is a member of a novel GDSL family of lipolytic enzymes. The estA gene showed high similarity to an open reading frame of unknown function located in thetrpE-trpG region of P. putida and to a gene encoding an outer membrane esterase of Salmonella typhimurium. Amino acid sequence alignments led us to predict that this esterase is an autotransporter protein which possesses a carboxy-terminal β-barrel domain, allowing the secretion of the amino-terminal passenger domain harboring the catalytic activity. Expression of estA in P. aeruginosa andEscherichia coli and subsequent cell fractionation revealed that the enzyme was associated with the cellular membranes. Trypsin treatment of whole cells released a significant amount of esterase, indicating that the enzyme was located in the outer membrane with the catalytic domain exposed to the surface. To our knowledge, this esterase is unique in that it exemplifies in P. aeruginosa(i) the first enzyme identified in the outer membrane and (ii) the first example of a type IV secretion mechanism.


2019 ◽  
Vol 8 (5) ◽  
pp. 172-177
Author(s):  
Rajeev Kumar ◽  
S. P. Singh ◽  
Mahesh Kumar ◽  
Anil Kumar

Outer membrane of Gram-negative bacteria has complex profile of proteins. The outer membrane proteins (OMPs) isolated from S. typhimurium by urea-EDTA extraction method and analysed through SDS-PAGE showed a complex electrophoretic profile having more than 15 low molecular weight proteins with molecular masses ranging between 3.5 and 43 kDa. The most important outer membrane protein (Omp28) of S. typhimurium with submolecular masses of 12.32kDa of main protein was recovered. The gene responsible for expression of this protein was also amplified through PCR and sequenced, showed 341bp amplicon size and predicted amino acid sequence of this pro-tein was determined. The Antigenic index was calculated from amino acid sequence of same gene and found 2.2 (0.1-2.2) suggesting highly antigenic in nature. The experimentally determined values are close agreement with the theoretically calculated molecular weight 12.32 kDa and pI: 9.61 from the gene sequence of this protein. The antigenic natures of predicted protein values are close agreement with experimental determent of Omp28 of S. typhimurium a possible formula for vaccine developmental of genus Salmonella.


1998 ◽  
Vol 66 (7) ◽  
pp. 3134-3141 ◽  
Author(s):  
Christine M. Litwin ◽  
Burke L. Byrne

ABSTRACT Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. ForV. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur mutant ofV. vulnificus which constitutively expresses at least two iron-regulated outer membrane proteins, of 72 and 77 kDa. The N-terminal amino acid sequence of the 77-kDa protein purified from theV. vulnificus fur mutant had 67% homology with the first 15 amino acids of the mature protein of the Vibrio cholerae heme receptor, HutA. In this report, we describe the cloning, DNA sequence, mutagenesis, and analysis of transcriptional regulation of the structural gene for HupA, the heme receptor ofV. vulnificus. DNA sequencing of hupAdemonstrated a single open reading frame of 712 amino acids that was 50% identical and 66% similar to the sequence of V. cholerae HutA and similar to those of other TonB-dependent outer membrane receptors. Primer extension analysis localized one promoter for the V. vulnificus hupAgene. Analysis of the promoter region of V. vulnificus hupA showed a sequence homologous to the consensus Fur box. Northern blot analysis showed that the transcript was strongly regulated by iron. An internal deletion in the V. vulnificus hupA gene, done by using marker exchange, resulted in the loss of expression of the 77-kDa protein and the loss of the ability to use hemin or hemoglobin as a source of iron. ThehupA deletion mutant of V. vulnificus will be helpful in future studies of the role of heme iron in V. vulnificus pathogenesis.


1999 ◽  
Vol 67 (8) ◽  
pp. 4084-4091 ◽  
Author(s):  
Christoph Lindenthal ◽  
Eric A. Elsinghorst

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strain H10407 is capable of invading epithelial cell lines derived from the human ileocecum and colon in vitro. Two separate chromosomally encoded invasion loci (tia and tib) have been cloned from this strain. These loci direct nonadherent and noninvasive laboratory strains of E. coli to adhere to and invade cultured human intestinal epithelial cells. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane protein that is directly correlated with the adherence and invasion phenotypes. TibA is synthesized as a 100-kDa precursor (preTibA) that must be modified for biological activity. Outer membranes of recombinant E. coliexpressing TibA or preTibA were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted to nitrocellulose. The presence of glycoproteins was detected by oxidization of carbohydrates with periodate and labeling with hydrazide-conjugated digoxigenin. Only TibA could be detected as a glycoprotein. Complementation experiments with tib deletion mutants of ETEC strain H10407 demonstrate that the TibA glycoprotein is expressed in H10407, that the entire tib locus is required for TibA synthesis, and that TibA is the only glycoprotein produced by H10407. Protease treatment of intact H10407 cells removes the carbohydrates on TibA, suggesting that they are surface exposed. TibA shows homology with AIDA-I from diffuse-adhering E. coliand with pertactin precursor from Bordetella pertussis. Both pertactin and AIDA-I are members of the autotransporter family of outer membrane proteins and are afimbrial adhesins that play an important role in the virulence of these organisms. Analysis of the predicted TibA amino acid sequence indicates that TibA is also an autotransporter. Analysis of the tib locus DNA sequence revealed an open reading frame with similarity to RfaQ, a glycosyltransferase. The product of this tib locus open reading frame is proposed to be responsible for TibA modification. These results suggest that TibA glycoprotein acts as an adhesin that may participate in the disease process.


Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 644-651 ◽  
Author(s):  
Kenneth Koo ◽  
W. Dorsey Stuart

The gene product of the mtr locus of Neurospora crassa is required for the transport of neutral aliphatic and aromatic amino acids via the N system. We have previously cloned three cosmids containing Neurospora DNA that complement the mtr-6(r) mutant allele. The cloned DNAs were tightly linked to restriction fragment length polymorphisms that flank the mtr locus. A 2.9-kbp fragment from one cosmid was subcloned and found to complement the mtr-6(r) allele. Here we report the sequence of the fragment that hybridized to a poly(A)+ mRNA transcript of about 2300 nucleotides. We have identified an 845-bp open reading frame (ORF) having a 59-bp intron as the potential mtr ORF. S1 nuclease analysis of the transcript confirmed the transcript size and the presence of the intron. A second open reading frame was found upstream in the same reading frame as the mtr ORF and appears to be present in the mRNA transcript. The mtr ORF is predicted to encode a 261 amino acid polypeptide with a molecular mass of 28 613 Da. The proposed polypeptide exhibits six potential α-helical transmembrane domains with an average length of 23 amino acids, does not have a signal sequence, and contains amino acid sequence homologous to an RNA binding motif.Key words: sequence, membranes, ribonucleoprotein.


2013 ◽  
Vol 288 (23) ◽  
pp. 16451-16459 ◽  
Author(s):  
Thomas Becker ◽  
Susanne E. Horvath ◽  
Lena Böttinger ◽  
Natalia Gebert ◽  
Günther Daum ◽  
...  

The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of β-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of β-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of β-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex.


Reproduction ◽  
2016 ◽  
Vol 152 (6) ◽  
pp. 665-672 ◽  
Author(s):  
Samantha A M Young ◽  
Haruhiko Miyata ◽  
Yuhkoh Satouh ◽  
Masanaga Muto ◽  
Martin R Larsen ◽  
...  

IZUMO1 is a protein found in the head of spermatozoa that has been identified as essential for sperm–egg fusion. Its binding partner in the egg has been discovered (JUNO); however, the roles of several domains within IZUMO1 remain unexplored. One such domain is the C-terminus, which undergoes major phosphorylation changes in the cytoplasmic portion of the protein during rat epididymal transit. However, the cytoplasmic tail of IZUMO1 in many species is highly variable, ranging from 55 to one amino acid. Therefore, to understand the role of the cytoplasmic tail of IZUMO1 in mouse, we utilised the gene manipulation system of CRISPR/Cas9 to generate a point mutation resulting in a premature stop codon, producing mice with truncated IZUMO1. Mice without the cytoplasmic tail of IZUMO1 showed normal fertility but decreased the amount of protein, indicating that whilst this region is important for the expression level of IZUMO1, it is dispensable for fertilisation in the mouse.


1988 ◽  
Vol 8 (9) ◽  
pp. 3898-3905 ◽  
Author(s):  
C Huxley ◽  
T Williams ◽  
M Fried

The mouse surfeit locus is unusual in that it contains a number of closely clustered genes (Surf-1, -2, and -4) that alternate in their direction of transcription (T. Williams, J. Yon, C. Huxley, and M. Fried, Proc. Natl. Acad. Sci. USA 85:3527-3530, 1988). The heterogeneous 5' ends of Surf-1 and Surf-2 are separated by 15 to 73 base pairs (bp), and the 3' ends of Surf-2 and Surf-4 overlap by 133 bp (T. Williams and M. Fried, Mol. Cell. Biol. 6:4558-4569, 1986; T. Williams and M. Fried, Nature (London) 322:275-279, 1986). A fourth gene in this locus, Surf-3, which is a member of a multigene family, has been identified. The poly(A) addition site of Surf-3 lies only 70 bp from the poly(A) addition site of Surf-1. Transcription of Surf-3 has been studied in the absence of the other members of its multigene family after transfection of a cloned genomic mouse DNA fragment, containing the Surf-3 gene, into heterologous monkey cells. Surf-3 specifies a highly expressed 1.0-kilobase mRNA that contains a long open reading frame of 266 amino acids, which would encode a highly basic polypeptide (23% Arg plus Lys). The other members of the Surf-3 multigene family are predominantly, if not entirely, intronless pseudogenes with the hallmarks of being generated by reverse transcription. The role of the very tight clustering on regulation of expression of the genes in the surfeit locus is discussed.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


Sign in / Sign up

Export Citation Format

Share Document