scholarly journals Probable Identification of a Membrane-Associated Repressor of Bacillus subtilis DNA Replication as the E2 Subunit of the Pyruvate Dehydrogenase Complex

2000 ◽  
Vol 182 (8) ◽  
pp. 2119-2124 ◽  
Author(s):  
Andrew Stein ◽  
William Firshein

ABSTRACT Two Bacillus subtilis lysogenic libraries were probed by an antibody specific for a previously described membrane-associated inhibitor of B. subtilis DNA replication (J. Laffan and W. Firshein, Proc. Natl. Acad. Sci. USA 85:7452–7456, 1988). Three clones that reacted strongly with the antibody contained an entire open reading frame. Sequencing identified one of the clones (R1-2) as containing the E2 subunit of the pyruvate dehydrogenase complex, dihydrolipoamide acetyltransferase. An AT-rich sequence in the origin region was identified initially as the site to which extracts from the R1-2 clone were bound. This sequence was almost identical to one detected in Bacillus thuringiensis that also bound the E2 subunit but which was involved in activating the Cry1 protoxin gene of the organism, not in inhibiting DNA replication (T. Walter and A. Aronson, J. Biol. Chem., 274:7901–7906, 1999). However, the exact sequence was not as important in B. subtilis as the AT-rich core region. Binding would occur as long as most of the AT character of the core remained. Purified E2 protein obtained by use of PCR and an expression vector reacted strongly with antibody prepared against the repressor protein and the protein in the R1-2 clone, but its specificity for the AT-rich region was altered. The purified E2 protein was capable of inhibiting membrane-associated DNA replication in vitro, but anti-E2 antibody was variable in its ability to rescue repression when added to the assay.

1985 ◽  
Vol 40 (11-12) ◽  
pp. 917-918 ◽  
Author(s):  
Uwe Homeyer ◽  
D. Schulze-Siebert ◽  
G. Schultz

Abstract In vitro incubation of intact spinach chloroplasts with 1 mᴍ Pyruvate was used to study the specificity of action of the herbicide Chlorsulfuron on the synthesis of valine, alanine and fatty acids. As a result, increasing concentrations of the herbicide strongly inhibited valine synthesis while fatty acid synthesis via pyruvate dehydrogenase complex (PDC) and alanine formation by transamination reaction was promoted.


1993 ◽  
Vol 289 (1) ◽  
pp. 81-85 ◽  
Author(s):  
J Quinn ◽  
A G Diamond ◽  
A K Masters ◽  
D E Brookfield ◽  
N G Wallis ◽  
...  

The dihydrolipoamide acetyltransferase subunit (E2p) of mammalian pyruvate dehydrogenase complex has two highly conserved lipoyl domains each modified with a lipoyl cofactor bound in amide linkage to a specific lysine residue. A sub-gene encoding the inner lipoyl domain of human E2p has been over-expressed in Escherichia coli. Two forms of the domain have been purified, corresponding to lipoylated and non-lipoylated species. The apo-domain can be lipoylated in vitro with partially purified E. coli lipoate protein ligase, and the lipoylated domain can be reductively acetylated by human E1p (pyruvate dehydrogenase). Availability of the two forms will now allow detailed biochemical and structural studies of the human lipoyl domains.


1987 ◽  
Vol 248 (2) ◽  
pp. 351-358 ◽  
Author(s):  
B Laber ◽  
N Amrhein

The alanine analogue 1-aminoethylphosphinate [H3C-CH(NH2)-PO2H2] effectively inhibited anthocyanin synthesis in buckwheat hypocotyls and caused an increase in the concentrations of alanine and alanine-derived metabolites. Aminotransferase inhibitors partially alleviated the effects of the analogue. 1-Aminoethylphosphinate did not affect the growth of Klebsiella pneumoniae under anaerobic conditions, but under aerobic conditions it inhibited growth and caused the massive excretion of pyruvate. The analogue inhibited the pyruvate dehydrogenase complex in vitro in the presence of an aminotransferase activity. The transamination product of 1-aminoethylphosphinate, acetylphosphinate (H3C-CO-PO2H2), was found to inhibit the pyruvate dehydrogenase complex in a time-dependent reaction that followed first-order and saturation kinetics and required the presence of thiamin pyrophosphate.


Biochemistry ◽  
2000 ◽  
Vol 39 (49) ◽  
pp. 15166-15178 ◽  
Author(s):  
J. Richard Miller ◽  
Robert W. Busby ◽  
Sean W. Jordan ◽  
Jennifer Cheek ◽  
Timothy F. Henshaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document