scholarly journals Identification of a UPC2 Homolog inSaccharomyces cerevisiae and Its Involvement in Aerobic Sterol Uptake

2001 ◽  
Vol 183 (3) ◽  
pp. 830-834 ◽  
Author(s):  
Kevin V. Shianna ◽  
W. David Dotson ◽  
Shirley Tove ◽  
Leo W. Parks

ABSTRACT Saccharomyces cerevisiae normally will not take up sterols from the environment under aerobic conditions. A specific mutant, upc2-1, of the predicted transcriptional activator UPC2 (YDR213w) has been recognized as a strain that allows a high level of aerobic sterol uptake. Another predicted transcriptional activator, the YLR228c gene product, is highly homologous to Upc2p. In fact, at the carboxy terminus 130 of the last 139 amino acids are similar between the two proteins. Since these proteins are very similar, the effect of mutations in the YLR228c open reading frame (ORF) was compared with like alterations in UPC2. First, the YLR228c ORF was insertionally inactivated and crossed with various UPC2constructs. Deletion of YLR228c and UPC2 in combination resulted in nonviability, suggesting that the two proteins have some essential overlapping function. The upc2-1point mutation responsible for aerobic sterol uptake was duplicated in the homologous carboxy region of the YLR228c ORF using site-directed mutagenesis. This mutation on a high-copy vector resulted in an increase in sterol uptake compared to an isogenic wild-type strain. The combination of both point mutations resulted in the greatest level of aerobic sterol uptake. When the YLR228c point mutation was expressed from a low-copy vector there was little if any effect on sterol uptake. Gas chromatographic analysis of the nonsaponifiable fractions of the various strains showed that the major sterol for all YLR228c andUPC2 combinations was ergosterol, the consensus yeast sterol.

2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


1989 ◽  
Vol 9 (4) ◽  
pp. 1406-1414
Author(s):  
A A McCracken ◽  
K B Kruse ◽  
J L Brown

Human alpha-1-proteinase inhibitor (A1PI) deficiency, associated with the Z-variant A1PI (A1PI/Z) gene, results from defective secretion of the inhibitor from the liver. The A1PI/Z gene exhibits two point mutations which specify amino acid substitutions, Val-213 to Ala and Glu-342 to Lys. The functional importance of these substitutions in A1PI deficiency was investigated by studying the secretion of A1PI synthesized in COS cells transfected with A1PI genes altered by site-directed mutagenesis. This model system correctly duplicates the secretion defect seen in individuals homozygous for the A1PI/Z allele and shows that the substitution of Lys for Glu-342 alone causes defective secretion of A1PI. The substitution of Lys for Glu-342 eliminates the possibility for a salt bridge between residues 342 and 290, which may decrease the conformational stability of the molecule and thus account for the secretion defect. However, when we removed the potential to form a salt bridge from the wild-type inhibitor by changing Lys-290 to Glu (A1PI/SB-290Glu), secretion was not reduced to the 19% of normal level seen for A1PI/Z-342Lys; in fact, 75% of normal secretion was observed. When the potential for salt bridge formation was returned to A1PI/Z-342Lys by changing Lys-290 to Glu, only 46% of normal secretion was seen. These data indicate that the amino acid substitution at position 342, rather than the potential to form the 290-342 salt bridge, is the critical alteration leading to the defect in A1PI secretion.


2007 ◽  
Vol 189 (7) ◽  
pp. 2873-2885 ◽  
Author(s):  
Yuqing Tian ◽  
Kay Fowler ◽  
Kim Findlay ◽  
Huarong Tan ◽  
Keith F. Chater

ABSTRACT WhiI, a regulator required for efficient sporulation septation in the aerial mycelium of Streptomyces coelicolor, resembles response regulators of bacterial two-component systems but lacks some conserved features of typical phosphorylation pockets. Four amino acids of the abnormal “phosphorylation pocket” were changed by site-directed mutagenesis. Unlike whiI null mutations, these point mutations did not interfere with sporulation septation but had various effects on spore maturation. Transcriptome analysis was used to compare gene expression in the wild-type strain, a D27A mutant (pale gray spores), a D69E mutant (wild-type spores), and a null mutant (white aerial mycelium, no spores) (a new variant of PCR targeting was used to introduce the point mutations into the chromosomal copy of whiI). The results revealed 45 genes that were affected by the deletion of whiI. Many of these showed increased expression in the wild type at the time when aerial growth and development were taking place. About half of them showed reduced expression in the null mutant, and about half showed increased expression. Some, but not all, of these 45 genes were also affected by the D27A mutation, and a few were affected by the D69E mutation. The results were consistent with a model in which WhiI acts differently at sequential stages of development. Consideration of the functions of whiI-influenced genes provides some insights into the physiology of aerial hyphae. Mutation of seven whiI-influenced genes revealed that three of them play roles in spore maturation.


2001 ◽  
Vol 183 (22) ◽  
pp. 6654-6661 ◽  
Author(s):  
Zheng-Chao Tu ◽  
Kevin C. Ray ◽  
Stuart A. Thompson ◽  
Martin J. Blaser

ABSTRACT Campylobacter fetus cells possess multiple promoterless sap homologs, each capable of expressing a surface layer protein (SLP) by utilizing a unique promoter present on a 6.2-kb invertible element. Each sap homolog includes a 626-bp 5′ conserved region (FCR) with 74 bp upstream and 552 bp within the open reading frame. After DNA inversion, the splice is seamless because the FCRs are identical. In mutant strain 23D:ACA2K101, in whichsapA and sapA2 flanking the invertible element in opposite orientations were disrupted by promoterless chloramphenicol resistance (Cmr) and kanamycin resistance (Kmr) cassettes, respectively, the frequency of DNA inversion is 100-fold lower than that of wild-type strain 23D. To define the roles of a 15-bp inverted repeat (IR) and a Chi-like site (CLS) in the FCR, we mutagenized each upstream of sapA2in 23D:ACA2K101 by introducing NotI andKpnI sites to create strains 23D:ACA2K101N and 23D:ACA2K101K, respectively. Alternatively selecting colonies for Cmr or Kmr showed that mutagenizing the IR or CLS had no apparent effect on the frequency of the DNA inversion. However, mapping the unique NotI or KpnI site in relation to the Cmr or Kmr cassette in the cells that changed phenotype showed that splices occurred both upstream and downstream of the mutated sites. PCR and sequence analyses also showed that the splice could occur in the 425-bp portion of the FCR downstream of the cassettes. In total, these data indicate that C.fetus can use multiple sites within the FCR for itssap-related DNA inversion.


2004 ◽  
Vol 379 (3) ◽  
pp. 609-615 ◽  
Author(s):  
Daniel CLARK ◽  
Roger S. ROWLETT ◽  
John R. COLEMAN ◽  
Daniel F. KLESSIG

In recent years, members of the β class of CAs (carbonic anhydrases) have been shown to complement ΔNCE103, a yeast strain unable to grow under aerobic conditions. The activity required for complementation of ΔNCE103 by tobacco chloroplast CA was studied by site-directed mutagenesis. E196A (Glu196→Ala), a mutated tobacco CA with low levels of CA activity, complemented ΔNCE103. To determine whether restoration of ΔNCE103 was due to residual levels of CA activity or whether it was related to previously proposed antioxidant activity of CAs [Götz, Gnann and Zimmermann (1999) Yeast 15, 855–864], additional complementation analysis was performed using human CAII, an α CA structurally unrelated to the β class of CAs to which the tobacco protein belongs. Human CAII complemented ΔNCE103, strongly arguing that CA activity is responsible for the complementation of ΔNCE103. Consistent with this conclusion, recombinant NCE103 synthesized in Escherichia coli shows CA activity, and ΔNCE103 expressing the tobacco chloroplast CA exhibits the same sensitivity to H2O2 as the wild-type strain.


2004 ◽  
Vol 48 (8) ◽  
pp. 3203-3206 ◽  
Author(s):  
George A. Jacoby ◽  
Debra M. Mills ◽  
Nancy Chow

ABSTRACT High-level resistance to ertapenem was produced by β-lactamases of groups 1, 2f, and 3 in a strain of Klebsiella pneumoniae deficient in Omp35 and Omp36. From a wild-type strain producing ACT-1 β-lactamase, ertapenem-resistant mutants for which the ertapenem MICs were up to 128 μg/ml and expression of outer membrane proteins was diminished could be selected.


2000 ◽  
Vol 83 (02) ◽  
pp. 234-238 ◽  
Author(s):  
Eva Forberg ◽  
Iris Huhmann ◽  
Ester Jimenez-Boj ◽  
Herbert Watzke

SummaryTwo homozygous point mutations were found in a patient with factor X (FX) deficiency; One results in substitution of Lys for Gla+14 and the second causes a Lys substitution for Glu102. The proposita has a severely reduced FX coagulant activity in the extrinsic (<1% of normal) and in the intrinsic (30% of normal) system of coagulation and after activation with Russel’s viper venom (18% of normal). The FX antigen is reduced in this patient to 20% of normal. The substitution of Lys for Glu102 in FX deficiency has been reported previously in a heterozygous state in conjunction with a Lys for Gla+14 substitution and with a Pro for Ser334 substitution. The contribution of the Lys for Glu102 substitution in the observed combined FX defect in these patients was unclear. The mutation causing the Glu102Lys substitution was introduced by site directed mutagenesis into a wild-type FX cDNA, and recombinant protein was expressed in HEK 293 cells. Compared to the wild-type FX cDNA, the mutant construct had a 67% activity upon activation in the extrinsic system, 93% activity upon activation in the intrinsic system and 72% after activation with RVV. The data presented show that the substitution of Lys for Glu102 results in a minor functional defect of the FX molecule.


Genetics ◽  
1994 ◽  
Vol 136 (4) ◽  
pp. 1355-1365 ◽  
Author(s):  
C Smith ◽  
H Giordano ◽  
R DeLotto

Abstract Two genes involved in the generation of dorsoventral asymmetry in the developing Drosophila melanogaster embryo, snake and easter, encode the zymogen form of serine proteases. Mutant alleles of snake were cloned and sequenced revealing two types of lesions: point mutations which alter the amino acid sequence (snk073 and snkrm4) and point mutations which alter the splicing (snk229 or snk233) of intron 1 of the mRNA from the normal 3' end of the intron to a cryptic site. snake mutant embryos derived from homozygous mothers can be fully rescued by injection of RNA transcripts of the wild-type snake cDNA. RNA phenotypic rescue and site-directed mutagenesis experiments indicate that snake requires the serine, histidine and aspartic acid of the catalytic triad for normal activity. Deletion experiments show that an acidic proenzyme domain is required for snake rescue activity to be uniformly distributed throughout the embryo. A second proenzyme domain, called the disulfide knot, appears to be essential for normal regulation of activity of the snake catalytic chain. Transcripts encoding only the proenzyme polypeptides of either snake or easter can dorsalize wild type embryos. We propose a model in which the proenzyme determinants of both the snake and easter enzymes mediate interaction between the serine proteases and other components of the dorsal-ventral patterning system.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Hassan Safi ◽  
Subramanya Lingaraju ◽  
Shuyi Ma ◽  
Seema Husain ◽  
Mainul Hoque ◽  
...  

ABSTRACT We have identified a previously unknown mechanism of reversible high-level ethambutol (EMB) resistance in Mycobacterium tuberculosis that is caused by a reversible frameshift mutation in the M. tuberculosis orn gene. A frameshift mutation in orn produces the small-colony-variant (SCV) phenotype, but this mutation does not change the MICs of any drug for wild-type M. tuberculosis. However, the same orn mutation in a low-level EMB-resistant double embB-aftA mutant (MIC = 8 μg/ml) produces an SCV with an EMB MIC of 32 μg/ml. Reversible resistance is indistinguishable from a drug-persistent phenotype, because further culture of these orn-embB-aftA SCV mutants results in rapid reversion of the orn frameshifts, reestablishing the correct orn open reading frame, returning the culture to normal colony size, and reversing the EMB MIC back to that (8 μg/ml) of the parental strain. Transcriptomic analysis of orn-embB-aftA mutants compared to wild-type M. tuberculosis identified a 27-fold relative increase in the expression of embC, which is a cellular target for EMB. Expression of embC in orn-embB-aftA mutants was also increased 5-fold compared to that in the parental embB-aftA mutant, whereas large-colony orn frameshift revertants of the orn-embB-aftA mutant had levels of embC expression similar to that of the parental embB-aftA strain. Reversible frameshift mutants may contribute to a reversible form of microbiological drug resistance in human tuberculosis.


2003 ◽  
Vol 185 (12) ◽  
pp. 3575-3582 ◽  
Author(s):  
Takahito Watanabe ◽  
Hidehiko Fujihara ◽  
Kensuke Furukawa

ABSTRACT Pseudomonas pseudoalcaligenes KF707 possesses a biphenyl-catabolic (bph) gene cluster consisting of bphR1A1A2-(orf3)-bphA3A4BCX0X1X2X3D. The bphR1 (formerly orf0) gene product, which belongs to the GntR family, is a positive regulator for itself and bphX0X1X2X3D. Further analysis in this study revealed that a second regulator belonging to the LysR family (designated bphR2) is involved in the regulation of the bph genes in KF707. The bphR2 gene was not located near the bph gene cluster, and its product (BphR2) exhibited a high level of similarity to NahR (the naphthalene- and salicylate-catabolic regulator belonging to the LysR family) in plasmid NAH7 of Pseudomonas putida. A strain containing a disrupted bphR2 gene failed to grow on biphenyl as a sole source of carbon, and the BphD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) activity was significantly reduced compared to that of wild-type strain KF707. Furthermore, the same strain exhibited extremely low transcription of bphR1, bphA1, bphC, bphX0, and bphD. However, when the bphR2 gene was provided in trans to the bphR2-disrupted strain, the transcription level of these genes was restored. These results indicate that bphR2 regulates the bph genes positively as a second regulator together with BphR1.


Sign in / Sign up

Export Citation Format

Share Document