scholarly journals Altering Catalytic Properties of 3-Chlorocatechol-Oxidizing Extradiol Dioxygenase fromSphingomonas xenophaga BN6 by Random Mutagenesis

2001 ◽  
Vol 183 (7) ◽  
pp. 2322-2330 ◽  
Author(s):  
Ulrich Riegert ◽  
Sibylle Bürger ◽  
Andreas Stolz

ABSTRACT The 2,3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas xenophaga strain BN6 (BphC1) oxidizes 3-chlorocatechol by a rather unique distal ring cleavage mechanism. In an effort to improve the efficiency of this reaction, bphC1 was randomly mutated by error-prone PCR. Mutants which showed increased activities for 3-chlorocatechol were obtained, and the mutant forms of the enzyme were shown to contain two or three amino acid substitutions. Variant enzymes containing single substitutions were constructed, and the amino acid substitutions responsible for altered enzyme properties were identified. One variant enzyme, which contained an exchanged amino acid in the C-terminal part, revealed a higher level of stability during conversion of 3-chlorocatechol than the wild-type enzyme. Two other variant enzymes contained amino acid substitutions in a region of the enzyme that is considered to be involved in substrate binding. These two variant enzymes exhibited a significantly altered substrate specificity and an about fivefold-higher reaction rate for 3-chlorocatechol conversion than the wild-type enzyme. Furthermore, these variant enzymes showed the novel capability to oxidize 3-methylcatechol and 2,3-dihydroxybiphenyl by a distal cleavage mechanism.

1967 ◽  
Vol 105 (1) ◽  
pp. 39-44 ◽  
Author(s):  
D J Bennett ◽  
E H Creaser

Amino acid changes in the enzyme l-histidinol dehydrogenase (l-histidinol–NAD oxidoreductase, EC 1.1.1.23) have been determined between the wild-type Neurospora crassa and two temperature-sensitive mutants. Comparison was made between amino acid analyses of peptides of differing electrophoretic and chromatographic mobilities resulting from tryptic and chymotryptic digestion of protein from wild-type and mutant K26, and wild-type and mutant K445 strains, respectively. The analyses demonstrate the substitution of aspartic acid for alanine in mutant K26, and leucine for histidine in mutant K445. The effects of the resulting changes in polarity and charge are discussed in relation to the catalytic functioning of the proteins.


2005 ◽  
Vol 71 (10) ◽  
pp. 5823-5827 ◽  
Author(s):  
Kazutoshi Fujii ◽  
Hirotaka Minagawa ◽  
Yoshinobu Terada ◽  
Takeshi Takaha ◽  
Takashi Kuriki ◽  
...  

ABSTRACT Amylomaltase from Thermus aquaticus catalyzes intramolecular transglycosylation of α-1,4 glucans to produce cyclic α-1,4 glucans (cycloamyloses) with degrees of polymerization of 22 and higher. Although the amylomaltase mainly catalyzes the transglycosylation reaction, it also has weak hydrolytic activity, which results in a reduction in the yield of the cycloamyloses. In order to obtain amylomaltase with less hydrolytic activity, random mutagenesis was perfromed for the enzyme gene. Tyr54 (Y54) was identified as the amino acid involved in the hydrolytic activity of the enzyme. When Y54 was replaced with all other amino acids by site-directed mutagenesis, the hydrolytic activities of the mutated enzymes were drastically altered. The hydrolytic activities of the Y54G, Y54P, Y54T, and Y54W mutated enzymes were remarkably reduced compared with that of the wild-type enzyme, while those of the Y54F and Y54K mutated enzymes were similar to that of the wild-type enzyme. Introducing an amino acid replacement at Y54 also significantly affected the cyclization activity of the amylomaltase. The Y54A, Y54L, Y54R, and Y54S mutated enzymes exhibited cyclization activity that was approximately twofold higher than that of the wild-type enzyme. When the Y54G mutated enzyme was employed for cycloamylose production, the yield of cycloamyloses was more than 90%, and there was no decrease until the end of the reaction.


2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Andrew G. Warrilow ◽  
Andrew T. Nishimoto ◽  
Josie E. Parker ◽  
Claire L. Price ◽  
Stephanie A. Flowers ◽  
...  

ABSTRACTRecombinantCandida albicansCYP51 (CaCYP51) proteins containing 23 single and 5 double amino acid substitutions found in clinical strains and the wild-type enzyme were expressed inEscherichia coliand purified by Ni2+-nitrilotriacetic acid agarose chromatography. Catalytic tolerance to azole antifungals was assessed by determination of the concentration causing 50% enzyme inhibition (IC50) using CYP51 reconstitution assays. The greatest increase in the IC50compared to that of the wild-type enzyme was observed with the five double substitutions Y132F+K143R (15.3-fold), Y132H+K143R (22.1-fold), Y132F+F145L (10.1-fold), G307S+G450E (13-fold), and D278N+G464S (3.3-fold). The single substitutions K143R, D278N, S279F, S405F, G448E, and G450E conferred at least 2-fold increases in the fluconazole IC50, and the Y132F, F145L, Y257H, Y447H, V456I, G464S, R467K, and I471T substitutions conferred increased residual CYP51 activity at high fluconazole concentrations.In vitrotesting of select CaCYP51 mutations inC. albicansshowed that the Y132F, Y132H, K143R, F145L, S405F, G448E, G450E, G464S, Y132F+K143R, Y132F+F145L, and D278N+G464S substitutions conferred at least a 2-fold increase in the fluconazole MIC. The catalytic tolerance of the purified proteins to voriconazole, itraconazole, and posaconazole was far lower and limited to increased residual activities at high triazole concentrations for certain mutations rather than large increases in IC50values. Itraconazole was the most effective at inhibiting CaCYP51. However, when tested against CaCYP51 mutant strains, posaconazole seemed to be the most resistant to changes in MIC as a result of CYP51 mutation compared to itraconazole, voriconazole, or fluconazole.


2003 ◽  
Vol 69 (1) ◽  
pp. 139-145 ◽  
Author(s):  
Ryoichi Sakaue ◽  
Naoki Kajiyama

ABSTRACT We succeeded in isolating several thermostable mutant fructosyl-amino acid oxidase (FAOX; EC 1.5.3) without reduction of productivity by directed evolution that combined an in vivo mutagenesis and membrane assay screening system. Five amino acid substitutions (T60A, A188G, M244L, N257S, and L261M) occurred in the most thermostable mutant obtained by a fourth round of directed evolution. This altered enzyme, FAOX-TE, was stable at 45°C, whereas the wild-type enzyme was not stable above 37°C. The Km values of FAOX-TE for d-fructosyl-l-valine and d-fructosyl-glycine were 1.50 and 0.58 mM, respectively, in contrast with corresponding values of 1.61 and 0.74 mM for the wild-type enzyme. This altered FAOX-TE will be useful in the diagnosis of diabetes.


1992 ◽  
Vol 68 (06) ◽  
pp. 672-677 ◽  
Author(s):  
Hitoshi Yahara ◽  
Keiji Matsumoto ◽  
Hiroyuki Maruyama ◽  
Tetsuya Nagaoka ◽  
Yasuhiro Ikenaka ◽  
...  

SummaryTissue-type plasminogen activator (t-PA) is a fibrin-specific agent which has been used to treat acute myocardial infarction. In an attempt to clarify the determinants for its rapid clearance in vivo and high affinity for fibrin clots, we produced five variants containing amino acid substitutions in the finger domain, at amino acid residues 7–9, 10–14, 15–19, 28–33, and 37–42. All the variants had a prolonged half-life and a decreased affinity for fibrin of various degrees. The 37–42 variant demonstrated about a 6-fold longer half-life with a lower affinity for fibrin. Human plasma clot lysis assay estimated the fibrinolytic activity of the 37–42 variant to be 1.4-fold less effective than that of the wild-type rt-PA. In a rabbit jugular vein clot lysis model, doses of 1.0 and 0.15 mg/kg were required for about 70% lysis in the wild-type and 37–42 variant, respectively. Fibrinogen was degraded only when the wild-type rt-PA was administered at a dose of 1.0 mg/kg. These findings suggest that the 37–42 variant can be employed at a lower dosage and that it is a more fibrin-specific thrombolytic agent than the wild-type rt-PA.


2001 ◽  
Vol 360 (3) ◽  
pp. 651-656 ◽  
Author(s):  
Arun GOYAL ◽  
Xing-Guo WANG ◽  
Paul C. ENGEL

Hybrid hexamers were made by refolding mixtures of two mutant forms of clostridial glutamate dehydrogenase. Mutant Cys320Ser (C320S) has a similar activity to the wild-type enzyme, but is unreactive with Ellman's reagent, 5,5′-dithiobis(2-nitrobenzoate) (DTNB). The triple mutant Lys89Leu/Ala163Gly/Ser380Ala (K89L/A163G/S380A), active with norleucine but not glutamate, is inactivated by DTNB, since the amino acid residue at position 320 is a cysteine residue. The chosen ratio favoured 1:5 hybrids of the triple mutant and C320S. The renatured mixture was treated with DTNB and separated on an NAD+–agarose column to which only C320S subunits bind tightly. Fractions were monitored for glutamate and norleucine activity and for releasable thionitrobenzoate to establish subunit stoichiometry. A fraction highly enriched in the 1:5 hybrid was identified. Homohexamers (C320S with 40mM glutamate and 1mM NAD+ at pH8.8, or K89L/A163G/S380A with 70mM norleucine and 1mM NAD+ at pH8.5) showed allosteric activation; succinate activated C320S approx. 50-fold (EC50 = 70mM, h = 2.4), and glutarate gave approx. 30-fold activation (EC50 = 35mM, h = 2.3). For the triple mutant, corresponding values were 80mM and 2.2 for succinate, and 75mM and 1.7 for glutarate, but maximal activation was only about 2-fold. In the 1:5 hybrid, with only one norleucine-active subunit per hexamer, responses to glutarate and succinate were still co-operative, and activation was more extensive than in the triple mutant homohexamer. A single norleucine-active subunit can thus respond co-operatively to a substrate analogue at the other five inactive sites. On the other hand, similar hyperbolic dependence on the norleucine concentration for the hybrid and the triple mutant homohexamer reflected the inability of C320S subunits to bind norleucine. With glutamate at pH8.8, an h value of 3.6 was obtained for the 1:5 hybrid, in contrast with an h value of 5.2 for the C320S homohexamer. The ‘foreign’ subunit evidently impedes inter-subunit communication to some extent.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Manabu Aoki ◽  
Debananda Das ◽  
Hironori Hayashi ◽  
Hiromi Aoki-Ogata ◽  
Yuki Takamatsu ◽  
...  

ABSTRACTDarunavir (DRV) has bimodal activity against HIV-1 protease, enzymatic inhibition and protease dimerization inhibition, and has an extremely high genetic barrier against development of drug resistance. We previously generated a highly DRV-resistant HIV-1 variant (HIVDRVRP51). We also reported that four amino acid substitutions (V32I, L33F, I54M, and I84V) identified in the protease of HIVDRVRP51are largely responsible for its high-level resistance to DRV. Here, we attempted to elucidate the role of each of the four amino acid substitutions in the development of DRV resistance. We found that V32I is a key substitution, which rarely occurs, but once it occurs, it predisposes HIV-1 to develop high-level DRV resistance. When two infectious recombinant HIV-1 clones carrying I54M and I84V (rHIVI54Mand rHIVI84V, respectively) were selected in the presence of DRV, V32I emerged, and the virus rapidly developed high-level DRV resistance. rHIVV32Ialso developed high-level DRV resistance. However, wild-type HIVNL4-3(rHIVWT) failed to acquire V32I and did not develop DRV resistance. Compared to rHIVWT, rHIVV32Iwas highly susceptible to DRV and had significantly reduced fitness, explaining why V32I did not emerge upon selection of rHIVWTwith DRV. When the only substitution is at residue 32, structural analysis revealed much stronger van der Waals interactions between DRV and I-32 than between DRV and V-32. These results suggest that V32I is a critical amino acid substitution in multiple pathways toward HIV-1’s DRV resistance development and elucidate, at least in part, a mechanism of DRV’s high genetic barrier to development of drug resistance. The results also show that attention should be paid to the initiation or continuation of DRV-containing regimens in people with HIV-1 containing the V32I substitution.IMPORTANCEDarunavir (DRV) is the only protease inhibitor (PI) recommended as a first-line therapeutic and represents the most widely used PI for treating HIV-1-infected individuals. DRV possesses a high genetic barrier to development of HIV-1’s drug resistance. However, the mechanism(s) of the DRV’s high genetic barrier remains unclear. Here, we show that the preexistence of certain single amino acid substitutions such as V32I, I54M, A71V, and I84V in HIV-1 protease facilitates the development of high-level DRV resistance. Interestingly, allin vitro-selected highly DRV-resistant HIV-1 variants acquired V32I but never emerged in wild-type HIV (HIVWT), and V32I itself rendered HIV-1 more sensitive to DRV and reduced viral fitness compared to HIVWT, strongly suggesting that the emergence of V32I plays a critical role in the development of HIV-1’s resistance to DRV. Our results would be of benefit in the treatment of HIV-1-infected patients receiving DRV-containing regimens.


Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 167-175 ◽  
Author(s):  
J. Palka ◽  
M. Schubiger ◽  
H. Schwaninger

The best studied mutations at the Notch locus produce a neurogenic phenotype, with a massive overgrowth of the nervous system at the expense of epidermis. We report here that, in the development of the adult peripheral nervous system, the Abruptex alleles of Notch have the opposite phenotype, namely an underproduction of sensory organs or sensilla. This arises primarily not from an arrest of the lineages that produce sensilla, from the degeneration of sensillar cells, or from the transformation into neurons of cells that normally secrete the cuticular components of a sensillum (as can happen in Notch alleles). Rather, our evidence argues strongly that the sensillar mother cells never form. This implies that the Notch protein plays a role in the process that first generates a difference between sensillar mother cells and ordinary epidermal cells. The number of sensilla formed on the wing of flies carrying multiple doses of Notch+ is virtually the same as that of wild type, i.e. the Abruptex phenotype is not reproduced to any significant extent. This suggests that the single amino acid substitutions that occur in Abruptex mutants confer on the protein some functionally distinctive feature, possibly more powerful intermolecular binding or altered stability.


2019 ◽  
Vol 20 (18) ◽  
pp. 4412
Author(s):  
Denis L. Atroshenko ◽  
Mikhail D. Shelomov ◽  
Sophia A. Zarubina ◽  
Nikita Y. Negru ◽  
Igor V. Golubev ◽  
...  

d-amino acid oxidase (DAAO, EC 1.4.3.3) is used in many biotechnological processes. The main industrial application of DAAO is biocatalytic production of 7-aminocephalosporanic acid from cephalosporin C with a two enzymes system. DAAO from the yeast Trigonopsis variabilis (TvDAAO) shows the best catalytic parameters with cephalosporin C among all known DAAOs. We prepared and characterized multipoint TvDAAO mutants to improve their activity towards cephalosporin C and increase stability. All TvDAAO mutants showed better properties in comparison with the wild-type enzyme. The best mutant was TvDAAO with amino acid changes E32R/F33D/F54S/C108F/M156L/C298N. Compared to wild-type TvDAAO, the mutant enzyme exhibits a 4 times higher catalytic constant for cephalosporin C oxidation and 8- and 20-fold better stability against hydrogen peroxide inactivation and thermal denaturation, respectively. This makes this mutant promising for use in biotechnology. The paper also presents the comparison of TvDAAO catalytic properties with cephalosporin C reported by others.


Sign in / Sign up

Export Citation Format

Share Document