scholarly journals The sloABCR Operon of Streptococcus mutans Encodes an Mn and Fe Transport System Required for Endocarditis Virulence and Its Mn-Dependent Repressor

2003 ◽  
Vol 185 (20) ◽  
pp. 5967-5975 ◽  
Author(s):  
Sehmi Paik ◽  
Arunsri Brown ◽  
Cindy L. Munro ◽  
Cynthia Nau Cornelissen ◽  
Todd Kitten

ABSTRACT Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 μM supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 μM supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by 55Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.

2003 ◽  
Vol 69 (8) ◽  
pp. 4760-4769 ◽  
Author(s):  
Jacqueline Abranches ◽  
Yi-Ywan M. Chen ◽  
Robert A. Burne

ABSTRACT The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major sugar uptake system in oral streptococci. The role of EIIABMan (encoded by manL) in gene regulation and sugar transport was investigated in Streptococcus mutans UA159. The manL knockout strain, JAM1, grew more slowly than the wild-type strain in glucose but grew faster in mannose and did not display diauxic growth, indicating that EIIABMan is involved in sugar uptake and in carbohydrate catabolite repression. PTS assays of JAM1, and of strains lacking the inducible (fruI) and constitutive (fruCD) EII fructose, revealed that S. mutans EIIABMan transported mannose and glucose and provided evidence that there was also a mannose-inducible or glucose-repressible mannose PTS. Additionally, there appears to be a fructose PTS that is different than FruI and FruCD. To determine whether EIIABMan controlled expression of the known virulence genes, glucosyltransferases (gtfBC) and fructosyltransferase (ftf) promoter fusions of these genes were established in the wild-type and EIIABMan-deficient strains. In the manL mutant, the level of chloramphenicol acetyltransferase activity expressed from the gtfBC promoter was up to threefold lower than that seen with the wild-type strain at pH 6 and 7, indicating that EIIABMan is required for optimal expression of gtfBC. No significant differences were observed between the mutant and the wild-type background in ftf regulation, with the exception that under glucose-limiting conditions at pH 7, the mutant exhibited a 2.1-fold increase in ftf expression. Two-dimensional gel analysis of batch-grown cells of the EIIABMan-deficient strain indicated that the expression of at least 38 proteins was altered compared to that seen with the wild-type strain, revealing that EIIABMan has a pleiotropic effect on gene expression.


2012 ◽  
Vol 56 (10) ◽  
pp. 5309-5314 ◽  
Author(s):  
Xiangyu Yao ◽  
Congran Li ◽  
Jianmei Zhang ◽  
Chung-Dar Lu

ABSTRACTPolyamines are absolute requirements for cell growth. When in excess,Pseudomonas aeruginosapossesses six γ-glutamylpolyamine synthetases (GPSs) encoded by thepauA1-pauA7genes to initiate polyamine catabolism. Recently, thepauA2mutant was reported to lose the capability to grow on spermine (Spm) and spermidine (Spd) as sole carbon and nitrogen sources. Although this mutant grew normally in defined minimal medium and LB broth, growth was completely abolished by the addition of Spm or Spd. These two compounds exert a bactericidal effect (Spm > Spd) on the mutants as demonstrated by MIC measurements (over 500-fold reduction) and time-killing curves. Spm toxicity in thepauA2mutant was attenuated when the major uptake system was further deleted from the strain, suggesting cytoplasmic targets of toxicity. In addition, the synergistic effect of Spm and carbenicillin in the wild-type strain PAO1 was diminished in mutants without functional PauA2. Furthermore, Spm MIC was reduced by 8-fold when the Spm uptake system was deleted from the wild-type strain, suggesting a second target of Spm toxicity in the periplasm. Experiments were also conducted to test the hypothesis that native Spm and Spd in human serum may be sufficient to kill thepauA2mutant. Growth of the mutant was completely inhibited by 40% (vol/vol) human serum, whereas the parental strain required 80%. Colony counts indicated that the mutant but not the parent was in fact killed by human plasma. In addition, carbenicillin MIC against the mutant was reduced by 16-fold in the presence of 20% human serum while that of the parental strain remained unchanged. Taking PauA2 as the template, sequence comparison indicates that putative PauA2 homologues are widespread in a variety of Gram-negative bacteria. In summary, this study reveals the importance of GPS in alleviation of polyamine toxicity when in excess, and it provides strong support to the feasibility of GPS as a molecular target for new antibiotic development.


2007 ◽  
Vol 75 (3) ◽  
pp. 1537-1539 ◽  
Author(s):  
Elizabeth M. Fozo ◽  
Kathy Scott-Anne ◽  
Hyun Koo ◽  
Robert G. Quivey

ABSTRACT An insertionally inactivated fabM strain of Streptococcus mutans does not produce unsaturated membrane fatty acids and is acid sensitive (E. M. Fozo and R. G. Quivey, Jr., J. Bacteriol. 186:4152-4158, 2004). In this study, the strain was shown to be poorly transmissible from host to host. Animals directly infected with the fabM strain exhibited fewer and less severe carious lesions than those observed in the wild-type strain.


2015 ◽  
Vol 25 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Zhiyan He ◽  
Jingping Liang ◽  
Zisheng Tang ◽  
Rui Ma ◽  
Huasong Peng ◽  
...  

Quorum sensing (QS) is a process by which bacteria communicate with each other by secreting chemical signals called autoinducers (AIs). Among Gram-negative and Gram-positive bacteria, AI-2 synthesized by the LuxS enzyme is widespread. The aim of this study was to evaluate the effect of QS <i>luxS</i> gene on initial biofilm formation by <i>Streptococcus mutans</i>. The bacterial cell surface properties, including cell hydrophobicity (bacterial adherence to hydrocarbons) and aggregation, which are important for initial adherence during biofilm development, were investigated. The biofilm adhesion assay was evaluated by the MTT method. The structures of the 5-hour biofilms were observed by using confocal laser scanning microscopy, and QS-related gene expressions were investigated by real-time PCR. The <i>luxS</i> mutant strain exhibited higher biofilm adherence and aggregation, but lower hydrophobicity than the wild-type strain. The confocal laser scanning microscopy images revealed that the wild-type strain tended to form smaller aggregates with uniform distribution, whereas the <i>luxS</i> mutant strain aggregated into distinct clusters easily discernible in the generated biofilm. Most of the genes examined were downregulated in the biofilms formed by the <i>luxS</i> mutant strain, except the <i>gtfB </i>gene. QS <i>luxS</i> gene can affect the initial biofilm formation by <i>S. mutans.</i>


2004 ◽  
Vol 72 (3) ◽  
pp. 1431-1440 ◽  
Author(s):  
José A. C. Lemos ◽  
Thomas A. Brown ◽  
Robert A. Burne

ABSTRACT Streptococcus mutans is a biofilm-forming bacterium that is adapted to tolerate rapid and dramatic fluctuations in nutrient availability, carbohydrate source, and pH in its natural environment, the human oral cavity. Dissecting the pathways used to form stable biofilms and to tolerate environmental stress is central to understanding the virulence of this organism. Here, we investigated the role of the S. mutans relA gene, which codes for a guanosine tetraphosphate and guanosine pentaphosphate [(p)ppGpp] synthetase/hydrolase, in biofilm formation and acid tolerance. Two mutants in which relA was insertionally inactivated or replaced by an antibiotic resistance determinant were constructed. Under normal growth and stress conditions, the mutants grew slower than the wild-type strain, although the final yields were similar. The mutants, which were still able to accumulate (p)ppGpp after the induction of a stringent response, showed significant reductions in biofilm formation on microtiter plates or hydroxylapatite disks. There was no difference in the sensitivities to acid killing of the parent and relA strains grown in planktonic cultures. However, when cells were grown in biofilms, the mutants became more acid resistant and could lower the pH through glycolysis faster and to a greater extent than the wild-type strain. Differences in acid resistance were not correlated with increases in F-ATPase activity, although bacterial sugar:phosphotransferase activity was elevated in the mutants. Expression of the luxS gene was increased as much as fivefold in the relA mutants, suggesting a link between AI-2 quorum sensing and the stringent response.


2005 ◽  
Vol 18 (7) ◽  
pp. 652-658 ◽  
Author(s):  
Dong-Jie Tang ◽  
Xiang-Jiang Li ◽  
Yong-Qiang He ◽  
Jia-Xun Feng ◽  
Baoshan Chen ◽  
...  

Zur is a regulator of the high-affinity zinc uptake system in many bacteria. In Xanthomonas campestris pv. campestris 8004, a putative protein encoded by the open reading frame designated as XC1430 shows 42% amino acid similarity with the Zur of Escherichia coli. An XC1430-disrupted mutant 1430nk was constructed by homologous suicide plasmid integration. 1430nk failed to grow in rich medium supplemented with Zn2+ at a concentration of 400 μM and in nonrich medium supplemented with Zn2+ at a concentration of 110 μM, whereas the wild-type strain grew well in the same conditions. In rich medium with 400 μM Zn2+, 1430nk accumulated significantly more Zn2+ than the wild-type strain. 1430nk showed a reduction in virulence on the host plant Chinese radish (Raphanus sativus L. var. radiculus Pers.) and produced less extracellular polysaccharide (EPS) than did the wild-type strain in the absence of added zinc. These results revealed that XC1430 is a functional member of the Zur regulator family that controls zinc homeostasis, EPS production, and virulence in X. campestris pv. campestris.


2002 ◽  
Vol 46 (12) ◽  
pp. 3756-3764 ◽  
Author(s):  
Hiromasa Tsuda ◽  
Yoshihisa Yamashita ◽  
Yukie Shibata ◽  
Yoshio Nakano ◽  
Toshihiko Koga

ABSTRACT Streptococcus mutans is resistant to bacitracin, which is a peptide antibiotic produced by certain species of Bacillus. The purpose of this study was to clarify the bacitracin resistance mechanism of S. mutans. We cloned and sequenced two S. mutans loci that are involved in bacitracin resistance. The rgp locus, which is located downstream from rmlD, contains six rgp genes (rgpA to rgpF) that are involved in rhamnose-glucose polysaccharide (RGP) synthesis in S. mutans. The inactivation of RGP synthesis in S. mutans resulted in an approximately fivefold-higher sensitivity to bacitracin relative to that observed for the wild-type strain Xc. The second bacitracin resistance locus comprised four mbr genes (mbrA, mbrB, mbrC, and mbrD) and was located immediately downstream from gtfC, which encodes the water-insoluble glucan-synthesizing enzyme. Although the bacitracin sensitivities of mutants that had defects in flanking genes were similar to that of the parental strain Xc, mutants that were defective in mbrA, mbrB, mbrC, or mbrD were about 100 to 120 times more sensitive to bacitracin than strain Xc. In addition, a mutant that was defective in all of the mbrABCD genes and rgpA was more sensitive to bacitracin than either the RGP or Mbr mutants. We conclude that RGP synthesis is related to bacitracin resistance in S. mutans and that the mbr genes modulate resistance to bacitracin via an unknown mechanism that is independent of RGP synthesis.


2006 ◽  
Vol 189 (5) ◽  
pp. 1582-1588 ◽  
Author(s):  
José A. Lemos ◽  
Yaima Luzardo ◽  
Robert A. Burne

ABSTRACT Strains of Streptococcus mutans lacking DnaK or GroEL appear not to be isolable. To better distinguish the roles played by these chaperones/chaperonins in the physiology of S. mutans, we created a knockdown strategy to lower the levels of DnaK by over 95% in strain SM12 and the level of GroEL about 80% in strain SM13. Interestingly, GroEL levels were approximately twofold higher in SM12 than in the parent strain, but the levels of DnaK were not altered in the GroEL knockdown strain. Both SM12 and SM13 grew slower than the parent strain, had a strong tendency to aggregate in broth culture, and showed major changes in their proteomes. Compared with the wild-type strain, SM12 and SM13 had impaired biofilm-forming capacities when grown in the presence of glucose. The SM12 strain was impaired in its capacity to grow at 44°C or at pH 5.0 and was more susceptible to H2O2, whereas SM13 behaved like the wild-type strain under these conditions. Phenotypical reversions were noted for both mutants when cells were grown in continuous culture at a low pH, suggesting the occurrence of compensatory mutations. These results demonstrate that DnaK and GroEL differentially affect the expression of key virulence traits, including biofilm formation and acid tolerance, and support that these chaperones have evolved to accommodate unique roles in the context of this organism and its niche.


1999 ◽  
Vol 181 (19) ◽  
pp. 6197-6199 ◽  
Author(s):  
Hung-Kuang Chang ◽  
Gerben J. Zylstra

ABSTRACT The ophD gene, encoding a permease for phthalate transport, was cloned from Burkholderia cepacia ATCC 17616. Expression of the gene in Escherichia coli results in the ability to transport phthalate rapidly into the cell. Uptake inhibition experiments show that 4-hydroxyphthalate, 4-chlorophthalate, 4-methylphthalate, and cinchomeronate compete for the phthalate permease. An ophD knockout mutant of 17616 grows slightly more slowly on phthalate but is still able to take up phthalate at rates equivalent to that of the wild-type strain. This means that 17616 must have a second phthalate-inducible phthalate uptake system.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


Sign in / Sign up

Export Citation Format

Share Document