scholarly journals FORMATION OF INTRACYTOPLASMIC MEMBRANE SYSTEM OF MYCOBACTERIA RELATED TO CELL DIVISION

1963 ◽  
Vol 85 (1) ◽  
pp. 150-163 ◽  
Author(s):  
Tamotsu Imaeda ◽  
Mituo Ogura
Author(s):  
C. L. Scott ◽  
W. R. Finnerty

Acinetobacter sp. HO-1-N, a gram-negative hydrocarbon oxidizing bacterium previously designated Micrococcus cerificans, has been shown to sequester the hydrocarbon into intracytoplasmic pools as a result of growth on this substrate. In hydrocarbon grown cells, an intracytoplasmic membrane system was also observed along with a doubling of cellular phospholipids (Z). However, using conventional dehydration and embedding procedures in preparing thin sectioned material, the hydrocarbon is extracted from the cells. This may lead to structural distortion, consequently, the freeze-etch technique was applied to preserve the integrity of the cell.


1984 ◽  
Vol 30 (5) ◽  
pp. 594-604 ◽  
Author(s):  
G. D. Sprott ◽  
L. C. Sowden ◽  
J. R. Colvin ◽  
K. F. Jarrell ◽  
T. J. Beveridge

The frequency of intracytoplasmic membranes in several methanogens grown on H2–CO2 varied with the conditions of growth and varied from one strain to another. Methanobacterium thermoautotrophicum often generated large numbers of intracytoplasmic membranes, while Methanospirillum hungatei produced these membranes only rarely. Conditions allowing for rapid growth, including optimal temperature and high agitation rates, increased the production of intracytoplasmic membranes. These membranes consisted mainly of vesicles composed of one or several membrane layers, often positioned in the central region of the cytoplasm. Several mesophilic methanogens could be grown such that intracytoplasmic membranes were rarely or never observed in thin section or in replicas of cross-fractures from frozen cells. Since high rates of methane synthesis still occurred in these cultures, it follows that the intracytoplasmic membrane system is not a necessary organelle for methane formation in these strains. Negative staining for electron microscopy is not an accurate method to visualize intracytoplasmic membranes in these bacterial cells.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3527-3534 ◽  
Author(s):  
Ashraf Khalifa ◽  
Chol Gyu Lee ◽  
Takuya Ogiso ◽  
Chihoko Ueno ◽  
Dayéri Dianou ◽  
...  

An aerobic, methane-oxidizing bacterium (strain RS11D-PrT) was isolated from rice rhizosphere. Cells of strain RS11D-PrT were Gram-stain-negative, motile rods with a single polar flagellum and contained an intracytoplasmic membrane system typical of type I methanotrophs. The strain utilized methane and methanol as sole carbon and energy sources. It could grow at 20–37 °C (optimum 31–33 °C), at pH 6.8–7.4 (range 5.5–9.0) and with 0–0.2 % (w/v) NaCl (there was no growth at above 0.5 % NaCl). pmoA and mmoX genes were present. The ribulose monophosphate and/or ribulose bisphosphate pathways were used for carbon assimilation. Results of sequence analysis of 16S rRNA genes showed that strain RS11D-PrT is related closely to the genera Methylococcus, Methylocaldum, Methyloparacoccus and Methylogaea in the family Methylococcaceae. The similarity was low (94.6 %) between strain RS11D-PrT and the most closely related type strain (Methyloparacoccus murrellii R-49797T). The DNA G+C content was 64.1 mol%. Results of phylogenetic analysis of the pmoA gene and chemotaxonomic data regarding the major cellular fatty acids (C16 : 1ω7c, C16 : 0 and C14 : 0) and the major respiratory quinone (MQ-8) also indicated the affiliation of strain RS11D-PrT to the Methylococcus–Methylocaldum–Methyloparacoccus–Methylogaea clade. On the basis of phenotypic, genotypic and phylogenetic characteristics, strain RS11D-PrT is considered to represent a novel genus and species within the family Methylococcaceae, for which the name Methylomagnum ishizawai gen. nov., sp. nov. is proposed. The type strain is RS11D-PrT ( = JCM 18894T = NBRC 109438T = DSM 29768T = KCTC 4681T).


2020 ◽  
Vol 71 (17) ◽  
pp. 5148-5159
Author(s):  
Nadia Fernández-Jiménez ◽  
Mónica Pradillo

Abstract The nuclear envelope delineates the eukaryotic cell nucleus. The membrane system of the nuclear envelope consists of an outer nuclear membrane and an inner nuclear membrane separated by a perinuclear space. It serves as more than just a static barrier, since it regulates the communication between the nucleoplasm and the cytoplasm and provides the anchoring points where chromatin is attached. Fewer nuclear envelope proteins have been identified in plants in comparison with animals and yeasts. Here, we review the current state of knowledge of the nuclear envelope in plants, focusing on its role as a chromatin organizer and regulator of gene expression, as well as on the modifications that it undergoes to be efficiently disassembled and reassembled with each cell division. Advances in knowledge concerning the mitotic role of some nuclear envelope constituents are also presented. In addition, we summarize recent progress on the contribution of the nuclear envelope elements to telomere tethering and chromosome dynamics during the meiotic division in different plant species.


Sign in / Sign up

Export Citation Format

Share Document