scholarly journals Whole-Genome Sequencing Reveals the Contribution of Long-Term Carriers in Staphylococcus aureus Outbreak Investigation

2017 ◽  
Vol 55 (7) ◽  
pp. 2188-2197 ◽  
Author(s):  
N. C. Gordon ◽  
B. Pichon ◽  
T. Golubchik ◽  
D. J. Wilson ◽  
J. Paul ◽  
...  

ABSTRACTWhole-genome sequencing (WGS) makes it possible to determine the relatedness of bacterial isolates at a high resolution, thereby helping to characterize outbreaks. However, forStaphylococcus aureus, the accumulation of within-host diversity during carriage might limit the interpretation of sequencing data. In this study, we hypothesized the converse, namely, that within-host diversity can in fact be exploited to reveal the involvement of long-term carriers (LTCs) in outbreaks. We analyzed WGS data from 20 historical outbreaks and applied phylogenetic methods to assess genetic relatedness and to estimate the time to most recent common ancestor (TMRCA). The findings were compared with the routine investigation results and epidemiological evidence. Outbreaks with epidemiological evidence for an LTC source had a mean estimated TMRCA (adjusted for outbreak duration) of 243 days (95% highest posterior density interval [HPD], 143 to 343 days) compared with 55 days (95% HPD, 28 to 81 days) for outbreaks lacking epidemiological evidence for an LTC (P= 0.004). A threshold of 156 days predicted LTC involvement with a sensitivity of 0.875 and a specificity of 1. We also found 6/20 outbreaks included isolates with differing antimicrobial susceptibility profiles; however, these had only modestly increased pairwise diversity (mean 17.5 single nucleotide variants [SNVs] [95% confidence interval {CI}, 17.3 to 17.8]) compared with isolates with identical antibiograms (12.7 SNVs [95% CI, 12.5 to 12.8]) (P< 0.0001). Additionally, for 2 outbreaks, WGS identified 1 or more isolates that were genetically distinct despite having the outbreak pulsed-field gel electrophoresis (PFGE) pulsotype. The duration-adjusted TMRCA allowed the involvement of LTCs in outbreaks to be identified and could be used to decide whether screening for long-term carriage (e.g., in health care workers) is warranted. Requiring identical antibiograms to trigger investigation could miss important contributors to outbreaks.

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Laurence Senn ◽  
Olivier Clerc ◽  
Giorgio Zanetti ◽  
Patrick Basset ◽  
Guy Prod’hom ◽  
...  

ABSTRACT Whole-genome sequencing (WGS) of 228 isolates was used to elucidate the origin and dynamics of a long-term outbreak of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 228 (ST228) SCC mec I that involved 1,600 patients in a tertiary care hospital between 2008 and 2012. Combining of the sequence data with detailed metadata on patient admission and movement confirmed that the outbreak was due to the transmission of a single clonal variant of ST228, rather than repeated introductions of this clone into the hospital. We note that this clone is significantly more frequently recovered from groin and rectal swabs than other clones ( P < 0.0001) and is also significantly more transmissible between roommates ( P < 0.01). Unrecognized MRSA carriers, together with movements of patients within the hospital, also seem to have played a major role. These atypical colonization and transmission dynamics can help explain how the outbreak was maintained over the long term. This “stealthy” asymptomatic colonization of the gut, combined with heightened transmissibility (potentially reflecting a role for environmental reservoirs), means the dynamics of this outbreak share some properties with enteric pathogens such as vancomycin-resistant enterococci or Clostridium difficile . IMPORTANCE Using whole-genome sequencing, we showed that a large and prolonged outbreak of methicillin-resistant Staphylococcus aureus was due to the clonal spread of a specific strain with genetic elements adapted to the hospital environment. Unrecognized MRSA carriers, the movement of patients within the hospital, and the low detection with clinical specimens were also factors that played a role in this occurrence. The atypical colonization of the gut means the dynamics of this outbreak may share some properties with enteric pathogens.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yachen Hu ◽  
Zhenyu Wang ◽  
Bin Qiang ◽  
Yaohui Xu ◽  
Xiang Chen ◽  
...  

ABSTRACTSalmonella entericasubspeciesentericaserovar Gallinarum biovar Pullorum (S. Pullorum) is the etiological agent of pullorum disease, causing white diarrhea with high mortality in chickens. There are many unsolved issues surrounding the epidemiology ofS. Pullorum, including its origin and transmission history as well as the discordance between its phenotypic heterogeneity and genetic monomorphism. In this paper, we report the results of whole-genome sequencing of a panel of 97S. Pullorum strains isolated between 1962 and 2014 from four countries across three continents. We utilized 6,795 core genome single nucleotide polymorphisms (SNPs) to reconstruct a phylogenetic tree within a spatiotemporal Bayesian framework, estimating that the most recent common ancestor ofS. Pullorum emerged in ∼914 CE (95% confidence interval [95%CI], 565 to 1273 CE). The extantS. Pullorum strains can be divided into four distinct lineages, each of which is significantly associated with geographical distribution. The intercontinental transmissions of lineages III and IV can be traced to the mid-19th century and are probably related to the “Hen Fever” prevalent at that time. Further genomic analysis indicated that the loss or pseudogenization of functional genes involved in metabolism and virulence inS. Pullorum has been ongoing since before and after divergence from the ancestor. In contrast, multiple prophages and plasmids have been acquired byS. Pullorum, and these have endowed it with new characteristics, especially the multidrug resistance conferred by two large plasmids in lineage I. The results of this study provide insight into the evolution ofS. Pullorum and prove the efficiency of whole-genome sequencing in epidemiological surveillance of pullorum disease.IMPORTANCEPullorum disease, an acute poultry septicemia caused bySalmonellaGallinarum biovar Pullorum, is fatal for young chickens and is a heavy burden on poultry industry. The pathogen is rare in most developed countries but still extremely difficult to eliminate in China. Efficient epidemiological surveillance necessitates clarifying the origin of the isolates from different regions and their phylogenic relationships. Genomic epidemiological analysis of 97S. Pullorum strains was carried out to reconstruct the phylogeny and transmission history ofS. Pullorum. Further analysis demonstrated that functional gene loss and acquisition occurred simultaneously throughout the evolution ofS. Pullorum, both of which reflected adaptation to the changing environment. The result of our study will be helpful in surveillance and prevention of pullorum disease.


2018 ◽  
Author(s):  
Bryan A. Wee ◽  
Anna S. Tai ◽  
Laura J. Sherrard ◽  
Nouri L. Ben Zakour ◽  
Kirt R. Hanks ◽  
...  

AbstractBackgroundChronic lung infections byPseudomonas aeruginosaare a significant cause of morbidity and mortality in people with cystic fibrosis (CF). SharedP. aeruginosastrains, that can be transmitted between patients, are of concern and in Australia the AUST-02 shared strain is predominant in individuals attending CF centres in Queensland and Western Australia. M3L7 is a multidrug resistant sub-type of AUST-02 that was recently identified in a Queensland CF centre and was shown to be associated with poorer clinical outcomes. The main aim of this study was to resolve the relationship of the emergent M3L7 sub-type within the AUST-02 group of strains using whole genome sequencing.ResultsA whole-genome core phylogeny of 63 isolates indicated that M3L7 is a monophyletic sub-lineage within the context of the broader AUST-02 group. Relatively short branch lengths connected all of the M3L7 isolates. A phylogeny based on nucleotide polymorphisms present across the genome showed that the chronological estimation of the most recent common ancestor was around 2001 (± 3 years). SNP differences between sequential M3L7 isolates collected 3-4 years apart from five patients suggested both continuous infection of the same strain and cross-infection of some M3L7 variants between patients. The majority of polymorphisms that were characteristic of M3L7 (i.e. acquired after divergence from all other AUST-02 isolates sequenced) were found to produce non-synonymous mutations in virulence and antibiotic resistance genes.ConclusionsM3L7 has recently diverged from a common ancestor indicating descent from a single carrier at a CF treatment centre in Australia. Both adaptation to the lung and transmission of M3L7 between adults attending this centre may have contributed to its rapid dissemination. The study emphasises the importance of clinical management in controlling the emergence of shared strains in CF.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 196
Author(s):  
Beverly Egyir ◽  
Jeannette Bentum ◽  
Naiki Attram ◽  
Anne Fox ◽  
Noah Obeng-Nkrumah ◽  
...  

Staphylococcus aureus (S. aureus) is a common cause of surgical site infections (SSIs) globally. Data on the occurrence of methicillin-susceptible S. aureus (MSSA) as well as methicillin-resistant S. aureus (MRSA) among patients with surgical site infections (SSIs) in sub-Saharan African are scarce. We characterized S. aureus from SSIs in Ghana using molecular methods and antimicrobial susceptibility testing (AST). Wound swabs or aspirate samples were collected from subjects with SSIs. S. aureus was identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF-MS); AST was performed by Kirby-Bauer disk diffusion, and results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Detection of spa, mecA, and pvl genes was performed by polymerase chain reaction (PCR). Whole-genome sequencing (WGS) was done using the Illumina MiSeq platform. Samples were collected from 112 subjects, with 13 S. aureus isolates recovered. Of these, 92% were sensitive to co-trimoxazole, 77% to clindamycin, and 54% to erythromycin. Multi-drug resistance was detected in 5 (38%) isolates. The four mecA gene-positive MRSA isolates detected belonged to ST152 (n = 3) and ST5 (n = 1). In total, 62% of the isolates were positive for the Panton-Valentine leukocidin (pvl) toxin gene. This study reports, for the first time, a pvl-positive ST152-t355 MRSA clone from SSIs in Ghana. The occurrence of multi-drug-resistant S. aureus epidemic clones suggests that continuous surveillance is required to monitor the spread and resistance trends of S. aureus in hospital settings in the country.


PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e21577 ◽  
Author(s):  
Adriana Renzoni ◽  
Diego O. Andrey ◽  
Ambre Jousselin ◽  
Christine Barras ◽  
Antoinette Monod ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document