scholarly journals Cefiderocol Antimicrobial Susceptibility Testing Considerations: the Achilles' Heel of the Trojan Horse?

2020 ◽  
Vol 59 (1) ◽  
pp. e00951-20 ◽  
Author(s):  
Patricia J. Simner ◽  
Robin Patel

ABSTRACTCefiderocol (formerly S-649266) is a novel siderophore-conjugated cephalosporin with activity against a broad array of multidrug-resistant (MDR), aerobic Gram-negative bacilli. The siderophore component binds iron and uses active iron transport for drug entry into the bacterial periplasmic space. The cephalosporin moiety is the active antimicrobial component, structurally resembling a hybrid between ceftazidime and cefepime. Like other β-lactam agents, the principal bactericidal activity of cefiderocol occurs via inhibition of bacterial cell wall synthesis by binding of penicillin-binding proteins (PBPs) and inhibiting peptidoglycan synthesis, leading to cell death. Iron concentrations need to be taken into consideration when in vitro antimicrobial susceptibility to cefiderocol is determined. Broth microdilution (BMD) and disk diffusion methods have been developed to determine in vitro activity of cefiderocol. For BMD, cation-adjusted Mueller-Hinton broth (CAMHB) requires iron depletion to provide MICs predictive of in vivo activity. A method to prepare iron-depleted CAMHB (ID-CAMHB) has been described by the Clinical and Laboratory Standards Institute (CLSI). For disk diffusion, standard Mueller-Hinton agar is recommended, presumably because iron is bound in the medium. Currently, clinical FDA and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints and investigational (research-use-only) CLSI breakpoints exist for interpreting cefiderocol susceptibility results for certain Gram-negative bacilli. Cefiderocol does not have clinically relevant activity against Gram-positive or anaerobic organisms. FDA or EUCAST breakpoints should be applied to interpret results for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex for patient care until the investigational status has been removed from CLSI breakpoints. Further clinical outcome data are required to assess the effectiveness of cefiderocol for treatment of other Acinetobacter species (non-baumannii complex) and Stenotrophomonas maltophilia at this time, and, as such, antimicrobial susceptibility testing of these organisms should be limited to research use in the scenario of limited treatment options.

2020 ◽  
Vol 59 (1) ◽  
pp. e01649-20 ◽  
Author(s):  
C. Paul Morris ◽  
Yehudit Bergman ◽  
Tsigedera Tekle ◽  
John A. Fissel ◽  
Pranita D. Tamma ◽  
...  

ABSTRACTAntimicrobial susceptibility testing (AST) of cefiderocol poses challenges because of its unique mechanism of action (i.e., requiring an iron-depleted state) and due to differences in interpretative criteria established by the Clinical and Laboratory Standards Institute (CLSI), U.S. Food and Drug Administration (FDA), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). Our objective was to compare cefiderocol disk diffusion methods (DD) to broth microdilution (BMD) for AST of Gram-negative bacilli (GNB). Cefiderocol AST was performed on consecutive carbapenem-resistant Enterobacterales (CRE; 58 isolates) and non-glucose-fermenting GNB (50 isolates) by BMD (lyophilized panels; Sensititre; Thermo Fisher) and DD (30 μg; research-use-only [RUO] MASTDISCS and FDA-cleared HardyDisks). Results were interpreted using FDA (prior to 28 September 2020 update), EUCAST, and investigational CLSI breakpoints (BPs). Categorical agreement (CA), minor errors (mE), major errors (ME), and very major errors (VME) were calculated for DD methods. The susceptibilities of all isolates by BMD were 72% (FDA), 75% (EUCAST) and 90% (CLSI). For DD methods, EUCAST BPs demonstrated lower susceptibility at 65% and 66%, compared to 74% and 72% (FDA) and 87% and 89% (CLSI) by HardyDisks and MASTDISCS, respectively. CA ranged from 75% to 90%, with 8 to 25% mE, 0 to 19% ME, and 0 to 20% VME and varied based on disk, GNB, and BPs evaluated. Both DD methods performed poorly for Acinetobacter baumannii complex. There is considerable variability when cefiderocol ASTs are interpreted using CLSI, FDA, and EUCAST breakpoints. DD offers a convenient alternative approach to BMD methods for cefiderocol AST, with the exception of A. baumannii complex isolates.


2017 ◽  
Vol 55 (7) ◽  
pp. 2116-2126 ◽  
Author(s):  
Matthias Marschal ◽  
Johanna Bachmaier ◽  
Ingo Autenrieth ◽  
Philipp Oberhettinger ◽  
Matthias Willmann ◽  
...  

ABSTRACT Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli ( n = 7) and multidrug-resistant Pseudomonas aeruginosa ( n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h ( P < 0.0001) and for AST by 40.39 h ( P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI.


2000 ◽  
Vol 38 (3) ◽  
pp. 1151-1155 ◽  
Author(s):  
Bertha C. Hill ◽  
Carolyn N. Baker ◽  
Fred C. Tenover

Present methods of antimicrobial susceptibility testing ofBordetella pertussis are time consuming and require specialized media that are not commercially available. We tested 52 isolates of B. pertussis for resistance to erythromycin, trimethoprim-sulfamethoxazole, chloramphenicol, and rifampin by agar dilution with Bordet-Gengou agar (BGA) containing 20% horse blood (reference method), Etest using BGA and Regan-Lowe agar without cephalexin (RL−C), and disk diffusion using BGA and RL−C. The organisms tested included four erythromycin-resistant isolates ofB. pertussis from a single patient, a second erythromycin-resistant strain of B. pertussis from an unrelated patient in another state, and 47 nasopharyngeal surveillance isolates of B. pertussis from children in the western United States. The results of agar dilution testing using direct inoculation of the organisms suspended in Mueller-Hinton broth were within ±1 dilution of those obtained after overnight passage of the inoculum in Stainer-Scholte medium, which is the traditional method of testing B. pertussis. The Etest method produced MICs similar to those of the agar dilution reference method for three of the four antimicrobial agents tested; the trimethoprim-sulfamethoxazole results were lower with Etest, particularly when the direct suspension method was used. Most of the Etest MICs, except for that of erythromycin, were on scale. Disk diffusion testing using RL−C medium was helpful in identifying the erythromycin-resistant strains, which produced no zone of inhibition around the disk; susceptible isolates produced zones of at least 42 mm. Thus, the antimicrobial susceptibility testing of B. pertussis can be simplified by using the Etest or disk diffusion on RL−C to screen for erythromycin-resistant isolates of B. pertussis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249203
Author(s):  
Jade Chen ◽  
Michael Tomasek ◽  
Amorina Cruz ◽  
Matthew L. Faron ◽  
Dakai Liu ◽  
...  

The emergence and evolution of antibiotic resistance has been accelerated due to the widespread use of antibiotics and a lack of timely diagnostic tests that guide therapeutic treatment with adequate sensitivity, specificity, and antimicrobial susceptibility testing (AST) accuracy. Automated AST instruments are extensively used in clinical microbiology labs and provide a streamlined workflow, simplifying susceptibility testing for pathogenic bacteria isolated from clinical samples. Although currently used commercial systems such as the Vitek2 and BD Phoenix can deliver results in substantially less time than conventional methods, their dependence on traditional AST inoculum concentrations and optical detection limit their speed somewhat. Herein, we describe the GeneFluidics ProMax lab automation system intended for a rapid 3.5-hour molecular AST from clinical isolates. The detection method described utilizes a higher starting inoculum concentration and automated molecular quantification of species-specific 16S rRNA through the use of an electrochemical sensor to assess microbiological responses to antibiotic exposure. A panel of clinical isolates consisting of species of gram-negative rods from the CDC AR bank and two hospitals, New York-Presbyterian Queens and Medical College of Wisconsin, were evaluated against ciprofloxacin, gentamicin, and meropenem in a series of reproducibility and clinical studies. The categorical agreement and reproducibility for Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella aerogenes, Klebsiella oxytoca, Klebsiella pneumoniae, and Pseudomonas aeruginosa were 100% and 100% for ciprofloxacin, 98.7% and 100% for gentamicin and 98.5% and 98.5% for meropenem, respectively.


2020 ◽  
Vol 58 (10) ◽  
Author(s):  
Hanna Hakvoort ◽  
Evelyn Bovenkamp ◽  
Kerryl E. Greenwood-Quaintance ◽  
Suzannah M. Schmidt-Malan ◽  
Jay N. Mandrekar ◽  
...  

ABSTRACT This study aimed to determine whether agar dilution, research-use-only disk diffusion (Mast Group Ltd., Bootle Merseyside, UK), Etest (bioMérieux, Inc., Durham, NC), and MIC test strip (MTS) (Liofilchem, Inc., Waltham, MA) methods yield equivalent results to those of broth microdilution (BMD) for imipenem-relebactam susceptibility testing using a collection of 297 Gram-negative bacilli, including members of the order Enterobacterales and Pseudomonas aeruginosa, enriched for drug resistance. MIC and disk diameter results were interpreted using United States Food and Drug Administration breakpoints. Overall, 76.8% of the isolates tested were susceptible to imipenem-relebactam by BMD. MIC values for agar dilution, Etest, and MTS were not significantly different from that for BMD, although they tended to be 1 to 2 dilutions higher. Essential agreement was 95.6% for agar dilution, 90.6% for Etest, and 85.2% for MTS. Categorical agreement was 98.0% for agar dilution, 73.1% for disk diffusion, 96.3% for Etest, and 96.6% for MTS. In conclusion, agar dilution and Etest yielded comparable results to BMD for imipenem-relebactam.


2018 ◽  
Vol 56 (4) ◽  
pp. e01892-17
Author(s):  
Meredith A. Hackel ◽  
Joseph P. Iaconis ◽  
James A. Karlowsky ◽  
Daniel F. Sahm

ABSTRACT Ceftaroline fosamil was approved by the United States Food and Drug Administration in 2010 and by the European Medicines Agency in 2012. As of April 2017, only one commercial antimicrobial susceptibility testing device offered a Gram-negative panel that included ceftaroline. This circumstance is unfortunate, as many clinical microbiology laboratories rely solely on commercial devices to generate in vitro antimicrobial susceptibility testing results for common bacterial pathogens. In lieu of device-based testing of clinical isolates of Enterobacteriaceae, laboratories wishing to test ceftaroline must either opt for disk diffusion testing or use a gradient strip; however, both alternatives interrupt laboratory workflow and require additional labor and expense. Identification of a reliable surrogate β-lactam to predict in vitro susceptibility to ceftaroline may offer another interim solution as laboratories await availability of ceftaroline for testing on their commercial devices. We tested six β-lactams (aztreonam, ceftazidime, ceftriaxone, cefotaxime, cefoxitin, and cefpodoxime) as potential surrogates for ceftaroline against a collection of 543 clinical isolates of Enterobacteriaceae selected to approximate the distribution of ceftaroline MICs observed in AWARE global surveillance studies conducted in 2013. All six potential surrogates generated very major error rates of 16.3% to 56.6%, far exceeding the accepted limit of 1.5% set by the Clinical and Laboratory Standards Institute (CLSI) and the United States Food and Drug Administration (FDA) Center for Devices and Radiological Health. Failure to identify a reliable surrogate to predict in vitro susceptibility and resistance to ceftaroline for clinical isolates of Enterobacteriaceae underscores the need for expedited addition of newer antimicrobial agents to commercial antimicrobial susceptibility testing devices.


Sign in / Sign up

Export Citation Format

Share Document