scholarly journals Characterization of Vibrio cholerae Strains Isolated from the Nigerian Cholera Outbreak in 2010

2016 ◽  
Vol 54 (10) ◽  
pp. 2618-2621 ◽  
Author(s):  
Susann Dupke ◽  
Kehinde A. Akinsinde ◽  
Roland Grunow ◽  
Bamidele A. Iwalokun ◽  
Daniel K. Olukoya ◽  
...  

We examined clinical samples from Nigerian patients with acute watery diarrhea forVibrio choleraeduring the 2010 cholera outbreak. A total of 109 suspected isolates were characterized, but only 57V. choleraestrains could be confirmed using multiplex real-time PCR as well asrpoBsequencing and typed asV. choleraeO:1 Ogawa biotype El Tor. This finding highlighted the need for accurate diagnosis of cholera in epidemic countries to implement life-saving interventions.

2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Mark Philip Bugayong ◽  
Hidemasa Izumiya ◽  
Josie M. Bilar ◽  
Masatomo Morita ◽  
Eiji Arakawa ◽  
...  

Introduction. The Philippines, comprising three island groups, namely, Luzon, Visayas and Mindanao, experienced an increase in cholera outbreaks in 2016. Previous studies have shown that Vibrio cholerae isolates obtained from the Philippines are novel hybrid El Tor strains that have evolved in the country and are clearly distinct from those found in Mozambique and Cameroon. Gap statement. The characterization of the strains isolated from outbreaks has been limited to phenotypic characteristics, such as biochemical and serological characteristics, in most previous studies. Aim. We performed multilocus variable-number tandem repeat (VNTR) analysis (MLVA) for V. cholerae isolates obtained from 2015 to 2016 to further characterize and understand the emergence and dissemination of the strains in the Philippines. Methodology. A total of 139 V . cholerae O1 Ogawa biotype El Tor isolates were obtained from the Philippines during diarrhoeal outbreaks in 18 provinces between 2015 and 2016. VNTR data were analysed to classify the MLVA profiles where the large-chromosome types (LCTs) were applied for grouping. Results. We identified 50 MLVA types among 139 isolates originating from 18 provinces, and 14 LCTs. The distribution of the LCTs was variable, and a few were located in specific areas or even in specific provinces. Based on eBURST analysis, 99 isolates with 7 LCTs and 32 MLVA types belonged to 1 group, suggesting that they were related to each other. LCT A was predominant (n=67) and was isolated from Luzon and Visayas. LCT A had 14 MLVA types; however, it mostly emerged during a single quarter of a year. Eight clusters were identified, each of which involved specific MLVA type(s). The largest cluster involved 23 isolates showing 3 MLVA types, 21 of which were MLVA type A-14 isolated from Negros Occidental during quarter 4 of 2016. Comparative analysis showed that almost all isolates from the Philippines were distinct from those in other countries. Conclusions. The genotypic relationship of the V. cholerae isolates obtained during outbreaks in the Philippines was studied, and their emergence and dissemination were elucidated. MLVA revealed the short-term dynamics of V. cholerae genotypes in the Philippines.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Bailey M. Carignan ◽  
Kyle D. Brumfield ◽  
Mike S. Son

ABSTRACT Cholera, an infectious disease of the small intestine caused by the aquatic bacterium Vibrio cholerae, often results in vomiting and acute watery diarrhea. If left untreated or if the response is too slow, the symptoms can quickly lead to extreme dehydration and ultimately death of the patient. Recent anecdotal evidence of cholera patients suffering from increasingly severe symptoms and of disease progression at a much higher rate than previously observed has emerged. As recent cholera outbreaks caused by increasingly virulent strains have resulted in higher mortality rates, the need to investigate the mechanism(s) allowing this observed increased virulence is apparent. The significance of our research is in identifying the mechanism for increased virulence capabilities, which will allow the development of a model that will greatly enhance our understanding of cholera disease and V. cholerae pathogenesis, leading to broader biomedical impacts, as cholera serves as a model for other enteric diarrheal diseases. Vibrio cholerae is the etiological agent of the infectious disease cholera, which is characterized by vomiting and severe watery diarrhea. Recently, V. cholerae clinical isolates have demonstrated increased virulence capabilities, causing more severe symptoms with a much higher rate of disease progression than previously observed. We have identified single nucleotide polymorphisms (SNPs) in four virulence-regulatory genes (hapR, hns, luxO, and vieA) of a hypervirulent V. cholerae clinical isolate, MQ1795. Herein, all SNPs and SNP combinations of interest were introduced into the prototypical El Tor reference strain N16961, and the effects on the production of numerous virulence-related factors, including cholera toxin (CT), the toxin-coregulated pilus (TCP), and ToxT, were analyzed. Our data show that triple-SNP (hapR hns luxO and hns luxO vieA) and quadruple-SNP combinations produced the greatest increases in CT, TCP, and ToxT production. The hns and hns luxO SNP combinations were sufficient for increased TCP and ToxT production. Notably, the hns luxO vieA triple-SNP combination strain produced TCP and ToxT levels similar to those of MQ1795. Certain SNP combinations (hapR and hapR vieA) had the opposite effect on CT, TCP, and ToxT expression. Interestingly, the hns vieA double-SNP combination strain increased TCP production while decreasing CT production. Our findings suggest that SNPs identified in the four regulatory genes, in various combinations, are associated with increased virulence capabilities observed in V. cholerae clinical isolates. These studies provide insight into the evolution of highly virulent strains. IMPORTANCE Cholera, an infectious disease of the small intestine caused by the aquatic bacterium Vibrio cholerae, often results in vomiting and acute watery diarrhea. If left untreated or if the response is too slow, the symptoms can quickly lead to extreme dehydration and ultimately death of the patient. Recent anecdotal evidence of cholera patients suffering from increasingly severe symptoms and of disease progression at a much higher rate than previously observed has emerged. As recent cholera outbreaks caused by increasingly virulent strains have resulted in higher mortality rates, the need to investigate the mechanism(s) allowing this observed increased virulence is apparent. The significance of our research is in identifying the mechanism for increased virulence capabilities, which will allow the development of a model that will greatly enhance our understanding of cholera disease and V. cholerae pathogenesis, leading to broader biomedical impacts, as cholera serves as a model for other enteric diarrheal diseases.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
David C. Klinzing ◽  
Seon Young Choi ◽  
Nur A. Hasan ◽  
Ronald R. Matias ◽  
Enrique Tayag ◽  
...  

ABSTRACTCholera continues to be a global threat, with high rates of morbidity and mortality. In 2011, a cholera outbreak occurred in Palawan, Philippines, affecting more than 500 people, and 20 individuals died.Vibrio choleraeO1 was confirmed as the etiological agent. Source attribution is critical in cholera outbreaks for proper management of the disease, as well as to control spread. In this study, threeV. choleraeO1 isolates from a Philippines cholera outbreak were sequenced and their genomes analyzed to determine phylogenetic relatedness toV. choleraeO1 isolates from recent outbreaks of cholera elsewhere. The PhilippinesV. choleraeO1 isolates were determined to beV. choleraeO1 hybrid El Tor belonging to the seventh-pandemic clade. They clustered tightly, forming a monophyletic clade closely related toV. choleraeO1 hybrid El Tor from Asia and Africa. The isolates possess a unique multilocus variable-number tandem repeat analysis (MLVA) genotype (12-7-9-18-25 and 12-7-10-14-21) and lack SXT. In addition, they possess a novel 15-kb genomic island (GI-119) containing a predicted type I restriction-modification system. The CTXΦ-RS1 array of the Philippines isolates was similar to that ofV. choleraeO1 MG116926, a hybrid El Tor strain isolated in Bangladesh in 1991. Overall, the data indicate that the PhilippinesV. choleraeO1 isolates are unique, differing from recentV. choleraeO1 isolates from Asia, Africa, and Haiti. Furthermore, the results of this study support the hypothesis that the Philippines isolates ofV. choleraeO1 are indigenous and exist locally in the aquatic ecosystem of the Philippines.IMPORTANCEGenetic characterization and phylogenomics analysis of outbreak strains have proven to be critical for probing clonal relatedness to strains isolated in different geographical regions and over time. Recently, extensive genetic analyses ofV. choleraeO1 strains isolated in different countries have been done. However, genome sequences ofV. choleraeO1 isolates from the Philippines have not been available for epidemiological investigation. In this study, molecular typing and phylogenetic analysis ofVibrio choleraeisolated from both clinical and environmental samples in 2011 confirmed unique genetic features of the Philippines isolates, which are helpful to understand the global epidemiology of cholera.


2012 ◽  
Vol 75 (4) ◽  
pp. 651-659 ◽  
Author(s):  
DIANA E. WATURANGI ◽  
NATANIA PRADITA ◽  
JESSICA LINARTA ◽  
SWAPAN BANERJEE

Vibrio cholerae is well recognized as the causative agent of cholera, an acute intestinal infection characterized by watery diarrhea that may lead to dehydration and death in some cases. V. cholerae is a natural inhabitant of the aquatic environment in the tropical regions. Jakarta has the highest percentage of individuals affected by sporadic diarrheal illness compared with other areas in Indonesia. Inadequate safety measures for drinking water supplies, improper sanitation, and poor hygiene can increase the risk of cholera outbreaks. Few studies have been conducted on the prevalence of these bacteria in ice and beverages that are popularly sold and consumed in Jakarta. In this study, we detected and quantified V. cholerae from ice and beverages collected from several areas in five regions of Jakarta. Levels of V. cholerae in both ice and beverages were determined with the three-tube most-probable-number (MPN) method and ranged from <0.3 to >110 MPN/ml. The presence of regulatory and virulence gene sequences was determined by using uniplex and multiplex PCR assays. Of 110 samples tested, 33 (30%) were positive for V. cholerae; 21 (64%) were ice samples and the remaining 12 (36%) were beverages. A total of 88 V. cholerae strains were isolated, based on the presence of the toxR gene sequence identified by PCR. Other genetic markers, such as hlyA (59%), ompU (16%), and ctxA (19%), also were found during the search for potential pathogenic strains. The detection and isolation of potentially harmful V. cholerae from ice and beverages in Jakarta indicate that these products pose a health risk from choleragenic vibrios, particularly because of the emergence of classical biotypes of V. cholerae O1 and potentially harmful non-O1 serovars of this species.


2012 ◽  
Vol 17 (5) ◽  
pp. 31-35
Author(s):  
V. N. Savelyev ◽  
I. V. Savelyeva ◽  
B. V. Babenyshev ◽  
A. N. Kulichenko

In a comparative perspective studied cholera outbreak in the Caucasus due to typical toxigenic and genetically modified (hybrid) El Tor variant strains have been studied. Revealed features of the genetic structure of the genome, factors and ways of transmission of the causative agent of modern cholera El tor should be considered when improving the program of epidemiological supervision in terms of enhancing antiepidemic and prevention measures in cholera, the causative factor of which are of hybrid variants of Vibrio cholerae El tor.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e86264 ◽  
Author(s):  
Bradd J. Haley ◽  
Seon Young Choi ◽  
Christopher J. Grim ◽  
Tiffiani J. Onifade ◽  
Hediye N. Cinar ◽  
...  

2018 ◽  
Vol 56 (11) ◽  
Author(s):  
David R. Greig ◽  
Ulf Schaefer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

ABSTRACT Epidemiological and microbiological data on Vibrio cholerae strains isolated between April 2004 and March 2018 (n = 836) and held at the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome-derived species identification and serotype for a subset of isolates (n = 152). Of the 836 isolates, 750 (89.7%) were from a fecal specimen, 206 (24.6%) belonged to serogroup O1, and 7 (0.8%) were serogroup O139; 792 (94.7%) isolates were from patients reporting recent travel abroad, most commonly to India (n = 209) and Pakistan (n = 104). Of the 152 V. cholerae isolates identified by use of kmer, 149 (98.1%) were concordant with those identified using the traditional biochemical approach. Traditional serotyping results were 100% concordant with those of the whole-genome sequencing (WGS) analysis for the identification of serogroups O1 and O139 and classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type 69 (ST69) and in V. cholerae O1 classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from U.K. travelers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from U.K. travelers will contribute to global surveillance programs and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travelers and mitigate the impact of imported infections and the associated risks to public health.


2020 ◽  
Vol 59 (1) ◽  
pp. e01986-20
Author(s):  
Ibne Karim M. Ali ◽  
Shantanu Roy

ABSTRACTThere are over 40 species within the genus Entamoeba, eight of which infect humans. Of these, four species (Entamoeba histolytica, E. dispar, E. moshkovskii, and E. bangladeshi) are morphologically indistinguishable from each other, and yet differentiation is important for appropriate treatment decisions. Here, we developed a hydrolysis probe-based tetraplex real-time PCR assay that can simultaneously detect and differentiate these four species in clinical samples. In this assay, multicopy small-subunit (SSU) ribosomal DNA (rDNA) sequences were used as targets. We determined that the tetraplex real-time PCR can detect amebic DNA corresponding to as little as a 0.1 trophozoite equivalent of any of these species. We also determined that this assay can detect E. histolytica DNA in the presence of 10-fold more DNA from another Entamoeba species in mixed-infection scenarios. With a panel of more than 100 well-characterized clinical samples diagnosed and confirmed using a previously published duplex real-time PCR (capable of detecting E. histolytica and E. dispar), our tetraplex real-time PCR assay demonstrated levels of sensitivity and specificity comparable with those demonstrated by the duplex real-time PCR assay. The advantage of our assay over the duplex assay is that it can specifically detect two additional Entamoeba species and can be used in conventional PCR format. This newly developed assay will allow further characterization of the epidemiology and pathogenicity of the four morphologically identical Entamoeba species, especially in low-resource settings.


2015 ◽  
Vol 83 (6) ◽  
pp. 2396-2408 ◽  
Author(s):  
Nicole Acosta ◽  
Stefan Pukatzki ◽  
Tracy L. Raivio

Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway inVibrio choleraeEl Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of thecrpgene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86751 ◽  
Author(s):  
Fitnat Yildiz ◽  
Jiunn Fong ◽  
Irina Sadovskaya ◽  
Thierry Grard ◽  
Evgeny Vinogradov

Sign in / Sign up

Export Citation Format

Share Document