scholarly journals Performance of Vitek 2 for Antimicrobial Susceptibility Testing of Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia with Vitek 2 (2009 FDA) and CLSI M100S 26th Edition Breakpoints

2016 ◽  
Vol 55 (2) ◽  
pp. 450-456 ◽  
Author(s):  
April M. Bobenchik ◽  
Eszter Deak ◽  
Janet A. Hindler ◽  
Carmen L. Charlton ◽  
Romney M. Humphries

ABSTRACTThe performances of Vitek 2 AST-GN69 and AST-XN06 cards were compared to Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution (BMD) for 99 isolates ofPseudomonas aeruginosa, 26Acinetobacter baumanniiisolates, and 11Stenotrophomonas maltophiliaisolates. In total, 15 antimicrobials were evaluated, with 11 forP. aeruginosa, 14 forA. baumannii, and 2 forS. maltophilia. Categorical agreement (CA) was assessed using both Vitek 2 breakpoints and 2016 CLSI M100S 26th edition breakpoints. The essential agreement values forP. aeruginosa,A. baumannii, andS. maltophiliawere 99.5%, 99.2%, and 100%, respectively. The CA values forP. aeruginosa,A. baumannii, andS. maltophiliawere 94.1%, 92.7%, and 95.5%, respectively, by the Vitek 2 breakpoints, and 93.4%, 92.3%, and 95.5%, respectively, by the CLSI breakpoints. Overall, the Vitek 2 performance was comparable to that of BMD using both Vitek 2 breakpoints and 2016 CLSI M100S 26th edition breakpoints. Improved performance was noted for the reformulated piperacillin-tazobactam and imipenem found on the AST-GN69 card, with no very major or major errors noted when using the CLSI breakpoints.

2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Romney M. Humphries ◽  
Daniel A. Green ◽  
Audrey N. Schuetz ◽  
Yehudit Bergman ◽  
Shawna Lewis ◽  
...  

ABSTRACT Susceptibility testing of the polymyxins (colistin and polymyxin B) is challenging for clinical laboratories. The Clinical and Laboratory Standards Institute (CLSI) Antimicrobial Susceptibility Testing Subcommittee evaluated two methods to enable accurate testing of these agents. These methods were a colistin broth disk elution (CBDE) and a colistin agar test (CAT), the latter of which was evaluated using two inoculum volumes, 1 μl (CAT-1) and 10 μl (CAT-10). The methods were evaluated using a collection of 270 isolates of Enterobacterales, 122 Pseudomonas aeruginosa isolates, and 106 Acinetobacter spp. isolates. Overall, 94.4% of CBDE results were in essential agreement and 97.9% in categorical agreement (CA) with reference broth microdilution MICs. Nine very major errors (VME; 3.2%) and 3 major errors (ME; 0.9%) were observed. With the CBDE, 98.6% CA was observed for Enterobacterales (2.5% VME, 0% ME), 99.3% CA was observed for P. aeruginosa (0% VME, 0.7% ME), and 93.1% CA was observed for Acinetobacter spp. (5.6% VME, 3.3% ME). Overall, CA was 94.9% with 6.8% VME using CAT-1 and improved to 98.3% with 3.9% VME using CAT-10. No ME were observed using either CAT-1 or CAT-10. Using the CAT-1/CAT-10, the CA observed was 99.4%/99.7% for Enterobacterales (1%/0.5% VME), 98.7%/100% for P. aeruginosa (8.3%/0% VME), and 88.5%/92.3% for Acinetobacter spp. (21.4%/14.3% VME). Based on these data, the CLSI antimicrobial susceptibility testing (AST) subcommittee endorsed the CBDE and CAT-10 methods for colistin testing of Enterobacterales and P. aeruginosa.


2019 ◽  
Vol 58 (2) ◽  
Author(s):  
Sergio García-Fernández ◽  
Yohann Bala ◽  
Tom Armstrong ◽  
María García-Castillo ◽  
Carey-Ann D. Burnham ◽  
...  

ABSTRACT Piperacillin-tazobactam (P/T) is a β-lactam–β-lactamase inhibitor combination frequently used in the hospital setting. Etest is a gradient diffusion method that represents an alternative to broth microdilution (BMD) for performing antimicrobial susceptibility testing. We conducted a multicenter evaluation of the performance of the new P/T Etest compared to that of BMD following U.S. Food and Drug Administration (FDA) and International Standards Organization (ISO) standard ISO 20776-2 criteria using Clinical and Laboratory Standards Institute (CLSI)-FDA and European Committee on Antimicrobial Susceptibility Testing (EUCAST) interpretive breakpoints, respectively. A total of 977 isolates (775 Enterobacterales isolates, 119 Pseudomonas aeruginosa isolates, and 83 Acinetobacter baumannii complex isolates) were tested. Overall essential agreement (EA) was 96.4% and 96.6% for Enterobacterales when FDA and ISO 20776-2 criteria, respectively, were followed. EA was 98.3% for P. aeruginosa and 91.6% for the A. baumannii complex when both the FDA and ISO criteria were followed. Applying CLSI-FDA breakpoints, categorical agreement (CA) reached 93.0%, 93.3%, and 89.2% for the Enterobacterales, P. aeruginosa, and the A. baumannii complex, respectively. Two very major errors (VMEs; 1.1%) were found among the Enterobacterales (for 2 Klebsiella pneumoniae isolates). No additional major errors (MEs) or VMEs were found. Applying EUCAST breakpoints, CA was 94.8% and 95.8% for Enterobacterales and P. aeruginosa, respectively (no breakpoints are currently available for the A. baumannii complex). No VMEs were observed among the Enterobacterales, but 2 (0.4%) MEs were found. Among the P. aeruginosa isolates, 2 (6.9%) VMEs and 3 (3.3%) MEs were observed. These errors resulted when P/T Etest MICs were 1 doubling dilution apart from the BMD MICs. In conclusion, the new P/T Etest represents an accurate tool for performing antimicrobial susceptibility testing of Enterobacterales, P. aeruginosa, and A. baumannii complex isolates with limited category errors.


Author(s):  
Elisa Rampacci ◽  
Michele Trotta ◽  
Caterina Fani ◽  
Serenella Silvestri ◽  
Valentina Stefanetti ◽  
...  

Staphylococcus pseudintermedius is the primary cause of canine cutaneous infections and sporadically isolated as pathogen from humans. Rapidly emerging antibiotic-resistant strains are creating serious health concern so that accurate and timely antimicrobial susceptibility testing (AST) is crucial for patient care. Here, the performances of AST methods Vitek-2, Disk Diffusion (DD) and Broth Microdilution (BMD) were compared for the determination of susceptibility of 79 S. pseudintermedius isolates from canine cutaneous infections and one from human pyoderma to oxacillin (OXA), amoxicillin/clavulanate (AMC), cephalothin (CEF), gentamicin (GEN), enrofloxacin (ENR), doxycycline (DOX), clindamycin (CLI), inducible clindamycin resistance (ICR), mupirocin (MUP) and trimethoprim-sulfamethoxazole (SXT). Overall, the agreement of DD and Vitek-2 using veterinary AST-GP80 card with reference BMD was ≥ 90%, suggesting reliable AST performances. While DD generated mainly minor errors and one major error for OXA, Vitek-2 produced one very major error for GEN and it failed in identifying one ICR-positive isolate. Moreover, five bacteria were diagnosed as ICR-positive by Vitek-2 but they showed a non-induction resistance phenotype by manual methods. All S. pseudintermedius were interpreted as susceptible or intermediately susceptible to DOX using CLSI breakpoints for human staphylococci that match the DOX concentration range included in AST-GP80. However, this could lead to inappropriate antimicrobial prescription for S. pseudintermedius infections in companion animals. Considering the clinical and epidemiological importance of S. pseudintermedius , we encourage updating action by the system manufacturer to address AST for this bacterium.


2020 ◽  
Vol 59 (1) ◽  
pp. e01649-20 ◽  
Author(s):  
C. Paul Morris ◽  
Yehudit Bergman ◽  
Tsigedera Tekle ◽  
John A. Fissel ◽  
Pranita D. Tamma ◽  
...  

ABSTRACTAntimicrobial susceptibility testing (AST) of cefiderocol poses challenges because of its unique mechanism of action (i.e., requiring an iron-depleted state) and due to differences in interpretative criteria established by the Clinical and Laboratory Standards Institute (CLSI), U.S. Food and Drug Administration (FDA), and European Committee on Antimicrobial Susceptibility Testing (EUCAST). Our objective was to compare cefiderocol disk diffusion methods (DD) to broth microdilution (BMD) for AST of Gram-negative bacilli (GNB). Cefiderocol AST was performed on consecutive carbapenem-resistant Enterobacterales (CRE; 58 isolates) and non-glucose-fermenting GNB (50 isolates) by BMD (lyophilized panels; Sensititre; Thermo Fisher) and DD (30 μg; research-use-only [RUO] MASTDISCS and FDA-cleared HardyDisks). Results were interpreted using FDA (prior to 28 September 2020 update), EUCAST, and investigational CLSI breakpoints (BPs). Categorical agreement (CA), minor errors (mE), major errors (ME), and very major errors (VME) were calculated for DD methods. The susceptibilities of all isolates by BMD were 72% (FDA), 75% (EUCAST) and 90% (CLSI). For DD methods, EUCAST BPs demonstrated lower susceptibility at 65% and 66%, compared to 74% and 72% (FDA) and 87% and 89% (CLSI) by HardyDisks and MASTDISCS, respectively. CA ranged from 75% to 90%, with 8 to 25% mE, 0 to 19% ME, and 0 to 20% VME and varied based on disk, GNB, and BPs evaluated. Both DD methods performed poorly for Acinetobacter baumannii complex. There is considerable variability when cefiderocol ASTs are interpreted using CLSI, FDA, and EUCAST breakpoints. DD offers a convenient alternative approach to BMD methods for cefiderocol AST, with the exception of A. baumannii complex isolates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shawn T. Clark ◽  
Patrick J. Stapleton ◽  
Pauline W. Wang ◽  
Yvonne C. W. Yau ◽  
Valerie J. Waters ◽  
...  

AbstractAntimicrobial susceptibility testing (AST) is essential for detecting resistance in Pseudomonas aeruginosa and other bacterial pathogens. Here we evaluated the performance of broth microdilution (BMD) panels created using a semi-automated liquid handler, the D300e Digital Dispenser (Tecan Group Ltd., CH) that relies on inkjet printing technology. Microtitre panels (96-well) containing nine twofold dilutions of 12 antimicrobials from five classes (β-lactams, β-lactam/β-lactamase inhibitors, aminoglycosides, fluoroquinolones, polymyxins) were prepared in parallel using the D300e Digital Dispenser and standard methods described by CLSI/ISO. To assess performance, panels were challenged with three well characterized quality control organisms and 100 clinical P. aeruginosa isolates. Traditional agreement and error measures were used for evaluation. Essential (EA) and categorical (CA) agreements were 92.7% and 98.0% respectively for P. aeruginosa isolates with evaluable on-scale results. The majority of minor errors that fell outside acceptable EA parameters (≥ ± 1 dilution, 1.9%) were seen with aztreonam (5%) and ceftazidime (4%), however all antimicrobials displayed acceptable performance in this situation. Differences in MIC were often log2 dilution lower for D300e dispensed panels. Major and very major errors were noted for aztreonam (2.6%) and cefepime (1.7%) respectively. The variable performance of D300e panels suggests that further testing is required to confirm their diagnostic utility for P. aeruginosa.


Author(s):  
Ayesha Khan ◽  
Cesar A. Arias ◽  
April Abbott ◽  
Jennifer Dien Bard ◽  
Micah M. Bhatti ◽  
...  

Stenotrophomonas maltophilia causes high mortality infections in immunocompromised hosts with limited therapeutic options. Many U.S. laboratories rely on commercial automated antimicrobial susceptibility tests (cASTs) and use CLSI breakpoints (BPs) for S. maltophilia. However, contemporary data on these systems is lacking. We assessed performances of Vitek2, MicroScan Walkaway and Phoenix relative to reference broth microdilution for trimethoprim-sulfamethoxazole (SXT), levofloxacin (LEV), minocycline (MIN) and ceftazidime (CAZ), with 109 S. maltophilia bloodstream isolates. Using CLSI breakpoints, categorical agreement (CA) was below 90% on all systems and drugs, with the exception of SXT by MicroScan (98.1%) and Phoenix (98.1%) and MIN by MicroScan (100%) and Phoenix (99.1%). For SXT, Vitek2 yielded a 77.1% CA. LEV and CAZ CA ranged from 67% - 85%. Very major errors (VME) were >3% for SXT (MicroScan, Phoenix), LEV (MicroScan) and CAZ (all systems). Major errors (ME) were >3% for SXT (Vitek 2), LEV (Phoenix) and CAZ (MicroScan, Phoenix). Minor errors were >10% for CAZ and LEV on all systems. Data were analyzed with EUCAST pharmacokinetic/pharmacodynamic CAZ, LEV, ciprofloxacin (CIP) and tigecycline (TGC) breakpoints when possible. CA was <90% for all. VME were >3% for CAZ (all systems), LEV (MicroScan), and TGC (Vitek2) and ME were >3% for LEV (MicroScan), CAZ (all systems), ciprofloxacin (Vitek2 and MicroScan) and TGC (Vitek 2, Phoenix). Minor errors (MI) were >10% for all agents and systems, by EUCAST breakpoints with an intermediate category (LEV, CAZ, CIP). Laboratories should use caution with cASTs for S. maltophilia as a high rate of errors may be observed.


Sign in / Sign up

Export Citation Format

Share Document