scholarly journals Performance of Saliva, Oropharyngeal Swabs, and Nasal Swabs for SARS-CoV-2 Molecular Detection: A Systematic Review and Meta-analysis

Author(s):  
Rose A. Lee ◽  
Joshua C. Herigon ◽  
Andrea Benedetti ◽  
Nira R. Pollock ◽  
Claudia M. Denkinger

Background: Nasopharyngeal (NP) swabs are considered the highest-yield sample for diagnostic testing for respiratory viruses, including SARS-CoV-2. The need to increase capacity for SARS-CoV-2 testing in a variety of settings, combined with shortages of sample collection supplies, have motivated a search for alternative sample types with high sensitivity. We systematically reviewed the literature to understand the performance of alternative sample types compared to NP swabs. Methods: We systematically searched PubMed, Google Scholar, medRxiv, and bioRxiv (last retrieval October 1st, 2020) for comparative studies of alternative specimen types [saliva, oropharyngeal (OP), and nasal (NS) swabs] versus NP swabs for SARS-CoV-2 diagnosis using nucleic acid amplification testing (NAAT). A logistic-normal random-effects meta-analysis was performed to calculate % positive alternative-specimen, % positive NP, and % dual positives overall and in sub-groups. The QUADAS 2 tool was used to assess bias. Results: From 1,253 unique citations, we identified 25 saliva, 11 NS, 6 OP, and 4 OP/NS studies meeting inclusion criteria. Three specimen types captured lower % positives [NS (82%, 95% CI: 73-90%), OP (84%, 95% CI: 57-100%), saliva (88%, 95% CI: 81 – 93%)] than NP swabs, while combined OP/NS matched NP performance (97%, 95% CI: 90-100%). Absence of RNA extraction (saliva) and utilization of a more sensitive NAAT (NS) substantially decreased alternative-specimen yield. Conclusions: NP swabs remain the gold standard for diagnosis of SARS-CoV-2, although alternative specimens are promising. Much remains unknown about the impact of variations in specimen collection, processing protocols, and population (pediatric vs. adult, late vs. early in disease course) and head-to head studies of sampling strategies are urgently needed.

Author(s):  
Rose A. Lee ◽  
Joshua C. Herigon ◽  
Andrea Benedetti ◽  
Nira R. Pollock ◽  
Claudia M. Denkinger

ABSTRACTBackgroundNasopharyngeal (NP) swabs are considered the highest-yield sample for diagnostic testing for respiratory viruses, including SARS-CoV-2. The need to increase capacity for SARS-CoV-2 testing in a variety of settings, combined with shortages of sample collection supplies, have motivated a search for alternative sample types with high sensitivity. We systematically reviewed the literature to understand the performance of alternative sample types compared to NP swabs.MethodsWe systematically searched PubMed, Google Scholar, medRxiv, and bioRxiv (last retrieval October 1st, 2020) for comparative studies of alternative specimen types [saliva, oropharyngeal (OP), and nasal (NS) swabs] versus NP swabs for SARS-CoV-2 diagnosis using nucleic acid amplification testing (NAAT). A logistic-normal random-effects meta-analysis was performed to calculate % positive alternative-specimen, % positive NP, and % dual positives overall and in sub-groups. The QUADAS 2 tool was used to assess bias.ResultsFrom 1,253 unique citations, we identified 25 saliva, 11 NS, 6 OP, and 4 OP/NS studies meeting inclusion criteria. Three specimen types captured lower % positives [NS (0.82, 95% CI: 0.73-0.90), OP (0.84, 95% CI: 0.57-1.0), saliva (0.88, 95% CI: 0.81 – 0.93)] than NP swabs, while combined OP/NS matched NP performance (0.97, 95% CI: 0.90-1.0). Absence of RNA extraction (saliva) and utilization of a more sensitive NAAT (NS) substantially decreased alternative-specimen yield.ConclusionsNP swabs remain the gold standard for diagnosis of SARS-CoV-2, although alternative specimens are promising. Much remains unknown about the impact of variations in specimen collection, processing protocols, and population (pediatric vs. adult, late vs. early in disease course) and head-to head studies of sampling strategies are urgently needed.


2021 ◽  
Author(s):  
Vânia M. Moreira ◽  
Paulo Mascarenhas ◽  
Vanessa Machado ◽  
João Botelho ◽  
José João Mendes ◽  
...  

SUMMARYBackgroundThe rapid and accurate testing of SARS-CoV-2 infection is still crucial to mitigate, and eventually halt, the spread of this disease. Currently, nasopharyngeal swab (NPS) and oropharyngeal swab (OPS) are the recommended standard sampling, yet, with some limitations. Several specimens that are easier to collect are being tested as alternatives to nasal/throat swabs in nucleic acid assays for SARS-CoV-2 detection. This study aims to critically appraise and compare the clinical performance of RT-PCR tests using oral saliva, deep-throat saliva/ posterior oropharyngeal saliva (DTS/POS), sputum, urine, feces, and tears/conjunctival swab [CS]) against standard specimens (NPS, OPS, or a combination of both).MethodsIn this systematic review and meta-analysis, five databases (PubMed, Scopus, Web of Science, ClinicalTrial.gov and NIPH Clinical Trial) were searched up to the 30th of December 2020. Case-control and cohort studies on the detection of SARS-CoV-2 were included. Methodological quality was assessed through the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS 2).FindingsWe identified 3022 entries, 33 of which (1.1%) met all required criteria and were included for the quantitative data analysis. Saliva presented the higher accuracy, 92.1% (95% CI: 70.0-98.3), with an estimated sensitivity of 83.9% (95% CI: 77.4-88.8) and specificity of 96.4% (95% CI: 89.5-98.8). DTS/POS samples had an overall accuracy of 79.7% (95% CI: 43.3-95.3), with an estimated sensitivity of 90.1% (95% CI: 83.3-96.9) and specificity of 63.1% (95% CI: 36.8-89.3). Remaining index specimens presented uncertainty given the lack of studies available.InterpretationOur meta-analysis shows that saliva samples from oral region provide a high sensitivity and specificity, being the best candidate as an alternative specimen to NPS/OPS for COVID-19 detection, with suitable protocols for swab-free sample collection to be determined and validated in the future. The distinction between oral and extra-oral salivary samples will be crucial since DTS/POS samples may induce a higher rate of false positives. Urine, feces, tears/CS and sputum seem unreliable for diagnosis. Saliva testing may increase testing capacity, ultimately promoting the implementation of truly deployable COVID-19 tests, which could either work at the point-of-care (e.g. hospitals, clinics) or outbreak control spots (e.g. schools, airports, and nursing homes).FundingNothing to declare.Research in contextEvidence before this studyThe lack of systematized data on the accuracy performance of alternative specimens for the detection of SARS-CoV-2 (against the standard NPS/OPS). The ever-growing number of studies available, made this updated systematic review timely and of the utmost importanceAdded value of this studyOur meta-analysis shows that saliva samples from the oral region provide a high sensitivity and specificity, being the best candidate as an alternative specimen to NPS/OPS for COVID-19 detection, with suitable protocols for swab-free sample collection to be determined and validated in the future. The distinction between oral and extra-oral salivary samples will be crucial since DTS/POS samples may induce a higher rate of false positives.Implications of all the available evidenceSaliva samples simply taken from the oral cavity are promising alternatives to the currently used nasal/throat swabs. Saliva specimens can be self-collected, mitigate the discomfort caused by sampling, reduce the transmission risk and increase testing capacity. Therefore, the validation of this alternative specimen will promote the implementation of truly deployable rapid tests for SARS-CoV-2 detection at the point-of-care or outbreak spots.


Author(s):  
Ron M Kagan ◽  
Amy A Rogers ◽  
Gwynngelle A Borillo ◽  
Nigel J Clarke ◽  
Elizabeth M Marlowe

Abstract Background The use of a remote specimen collection strategy employing a kit designed for unobserved self-collection for SARS-CoV-2 RT-PCR can decrease the use of PPE and exposure risk. To assess the impact of unobserved specimen self-collection on test performance, we examined results from a SARS-CoV-2 qualitative RT-PCR test for self-collected specimens from participants in a return-to-work screening program and assessed the impact of a pooled testing strategy in this cohort. Methods Self-collected anterior nasal swabs from employee return to work programs were tested using the Quest Diagnostics SARS-CoV-2 RT-PCR EUA. The Ct values for the N1 and N3 N-gene targets and a human RNase P (RP) gene control target were tabulated. For comparison, we utilized Ct values from a cohort of HCP-collected specimens from patients with and without COVID-19 symptoms. Results Among 47,923 participants, 1.8% were positive. RP failed to amplify for 13/115,435 (0.011%) specimens. The median (IQR) Cts were 32.7 (25.0-35.7) for N1 and 31.3 (23.8-34.2) for N3. Median Ct values in the self-collected cohort were significantly higher than those of symptomatic, but not asymptomatic patients. Based on Ct values, pooled testing with 4 specimens would have yielded inconclusive results in 67/1,268 (5.2%) specimens but only a single false-negative result. Conclusions Unobserved self-collection of nasal swabs provides adequate sampling for SARS-CoV-2 RT-PCR testing. These findings alleviate concerns of increased false negatives in this context. Specimen pooling could be used for this population as the likelihood of false negative results is very low due when using a sensitive, dual-target methodology.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 363
Author(s):  
Vânia M. Moreira ◽  
Paulo Mascarenhas ◽  
Vanessa Machado ◽  
João Botelho ◽  
José João Mendes ◽  
...  

The rapid and accurate testing of SARS-CoV-2 infection is still crucial to mitigate, and eventually halt, the spread of this disease. Currently, nasopharyngeal swab (NPS) and oropharyngeal swab (OPS) are the recommended standard sampling techniques, yet, these have some limitations such as the complexity of collection. Hence, several other types of specimens that are easier to obtain are being tested as alternatives to nasal/throat swabs in nucleic acid assays for SARS-CoV-2 detection. This study aims to critically appraise and compare the clinical performance of RT-PCR tests using oral saliva, deep-throat saliva/posterior oropharyngeal saliva (DTS/POS), sputum, urine, feces, and tears/conjunctival swab (CS) against standard specimens (NPS, OPS, or a combination of both). In this systematic review and meta-analysis, five databases (PubMed, Scopus, Web of Science, ClinicalTrial.gov and NIPH Clinical Trial) were searched up to the 30th of December, 2020. Case-control and cohort studies on the detection of SARS-CoV-2 were included. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS 2). We identified 1560 entries, 33 of which (1.1%) met all required criteria and were included for the quantitative data analysis. Saliva presented the higher accuracy, 92.1% (95% CI: 70.0–98.3), with an estimated sensitivity of 83.9% (95% CI: 77.4–88.8) and specificity of 96.4% (95% CI: 89.5–98.8). DTS/POS samples had an overall accuracy of 79.7% (95% CI: 43.3–95.3), with an estimated sensitivity of 90.1% (95% CI: 83.3–96.9) and specificity of 63.1% (95% CI: 36.8–89.3). The remaining index specimens could not be adequately assessed given the lack of studies available. Our meta-analysis shows that saliva samples from the oral region provide a high sensitivity and specificity; therefore, these appear to be the best candidates for alternative specimens to NPS/OPS in SARS-CoV-2 detection, with suitable protocols for swab-free sample collection to be determined and validated in the future. The distinction between oral and extra-oral salivary samples will be crucial, since DTS/POS samples may induce a higher rate of false positives. Urine, feces, tears/CS and sputum seem unreliable for diagnosis. Saliva testing may increase testing capacity, ultimately promoting the implementation of truly deployable COVID-19 tests, which could either work at the point-of-care (e.g. hospitals, clinics) or at outbreak control spots (e.g., schools, airports, and nursing homes).


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S139-S139
Author(s):  
J C Lownik ◽  
J S Farrar ◽  
G Way ◽  
R K Martin

Abstract Introduction/Objective Since the start of the coronavirus disease 2019 (COVID-19) pandemic, molecular diagnostic testing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has faced substantial supply chain shortages and noteworthy delays in result reporting after sample collection. Supply chain shortages have been most evident in reagents for RNA extraction and rapid diagnostic testing. In this study, we explored the kinetic limitations of extraction-free rapid cycle RT-qPCR for SARS-CoV-2 virus detection using the commercially available capillary based LightCycler. Methods/Case Report We optimized reverse transcription and PCR under extraction-free and rapid thermocycling conditions utilizing hydrolysis probe-based detection methods using a Roche LightCycler. Results (if a Case Study enter NA) This protocol improves detection speed while maintaining the sensitivity and specificity of hydrolysis probe-based detection. Percentage agreement between the developed assay and previously tested positive patient samples was 97.6% (n= 40/41) and negative patient samples was 100% (40/40). We further demonstrate that using purified RNA, SARS-CoV-2 testing using extreme RT-PCR and product verification by melting can be completed in less than 3 minutes. Conclusion We developed a protocol for sensitive and specific RT-qPCR of SARS-CoV-2 RNA from nasopharyngeal swabs in less than 20 minutes, with minimal hands-on time requirements. Overall, these studies provide a framework for increasing the speed of SARS-CoV-2 and other infectious disease testing.


2021 ◽  
Author(s):  
Revata Utama ◽  
Rebriarina Hapsari ◽  
Iva Puspitasari ◽  
Desvita Sari ◽  
Meita Hendrianingtyas ◽  
...  

Abstract Scaling up SARS-CoV-2 testing and tracing continues to be plagued with the limitation of the sample collection method, which requires trained healthcare workers to perform and causes discomfort to the patients. In response, we assessed the performance and user preference of gargle specimens for qRT-PCR-based detection of SARS-CoV-2 in Indonesia. Inpatients who had recently been diagnosed with COVID-19 and outpatients who were about to perform qRT-PCR testing were asked to provide nasopharyngeal and oropharyngeal (NPOP) swabs and self-collected gargle specimens. We demonstrated that self-collected gargle specimens can be an alternative specimen to detect SARS-CoV-2 and the viral RNA remained stable for 31 days at room temperature storage. The developed method was validated for use on multiple RNA extraction kits and commercially available COVID-19 RT-PCR kits. Our developed method achieved a sensitivity of 91.38% when compared to paired NPOP swab specimens (Ct < 35), with 97.10% of patients preferring the self-collected gargle method.


2020 ◽  
Author(s):  
Veronica L. Fowler ◽  
Bryony Armson ◽  
Jose L. Gonzales ◽  
Emma L. Wise ◽  
Emma L. A. Howson ◽  
...  

AbstractThe COVID-19 pandemic has illustrated the importance of rapid, accurate diagnostic testing for the effective triaging and cohorting of patients and timely tracking and tracing of cases. However, a surge in diagnostic testing quickly resulted in worldwide competition for the same sample preparation and real-time RT-PCR diagnostic reagents (rRT-PCR). Consequently, Hampshire Hospitals NHS Foundation Trust, UK sought to diversify their diagnostic portfolio by exploring alternative amplification chemistries including those that permit direct testing without RNA extraction. This study describes the validation of a SARS-CoV-2 RT-LAMP assay, which is an isothermal, autocycling, strand-displacement nucleic acid amplification technique which can be performed on extracted RNA, “RNA RT-LAMP” or directly from swab “Direct RT-LAMP”. Analytical specificity (ASp) of this new RT-LAMP assay was 100% and analytical sensitivity (ASe) was between 1×101 and 1×102 copies when using a synthetic DNA target. The overall diagnostic sensitivity (DSe) and specificity (DSp) of RNA RT-LAMP was 97% and 99% respectively, relative to the standard of care (SoC) rRT-PCR. When a CT cut-off of 33 was employed, above which increasingly, evidence suggests there is a very low risk of patients shedding infectious virus, the diagnostic sensitivity was 100%. The DSe and DSp of Direct-RT-LAMP was 67% and 97%, respectively. When setting CT cut-offs of ≤33 and ≤25, the DSe increased to 75% and 100%, respectively. Time from swab-to-result for a strong positive sample (CT < 25) was < 15 minutes. We propose that RNA RT-LAMP could replace rRT-PCR where there is a need for increase in throughput, whereas Direct RT-LAMP could be used as a screening tool for triaging patients into appropriate hospitals wards, at GP surgeries and in care homes, or for population screening to identify highly contagious individuals (“super shedders”). Direct RT-LAMP could also be used during times of high prevalence to save critical extraction and rRT-PCR reagents by “screening” out those strong positives from diagnostic pipelines.


2011 ◽  
Vol 32 (1) ◽  
pp. 7
Author(s):  
Jen Kok ◽  
David W Smith ◽  
Dominic E Dwyer

Aetiological confirmation of respiratory tract infections in patients facilitates appropriate antimicrobial use and infection control procedures. From a public health perspective, the laboratory confirmation of influenza allows assessment of circulating viruses, community attack rates and the efficacy of vaccination programs, while assisting modelling as part of pandemic preparedness planning. Rapid antigen and immunofluorescent antigen tests are relatively insensitive in detecting pandemic (H1N1) 2009 influenza compared to seasonal subtypes, and influenza subtype-specific nucleic acid amplification tests should be used as the ?gold-standard? for diagnosis. Pathogen-specific serological testing aids the retrospective diagnosis of infection, and is used in seroprevalence studies. Influenza virus isolation is needed for vaccine assessment and formulation. Although some challenges surrounding diagnostic testing during pandemic (H1N1) 2009 have been resolved, others remain; this may test laboratories again in future pandemics.


Author(s):  
Sara B Griesemer ◽  
Greta Van Slyke ◽  
Dylan Ehrbar ◽  
Klemen Strle ◽  
Tugba Yildirim ◽  
...  

Identifying SARS-CoV-2 infections through aggressive diagnostic testing remains critical in tracking and curbing the spread of the COVID-19 pandemic. Collection of nasopharyngeal swabs (NPS), the preferred sample type for SARS-CoV-2 detection, has become difficult due to the dramatic increase in testing and consequential supply strain. Therefore, alternative specimen types have been investigated, that provide similar detection sensitivity with reduced health care exposure and potential for self-collection. In this study, the detection sensitivity of SARS-CoV-2 in nasal swabs (NS) and saliva was compared to that of NPS, using matched specimens from two outpatient cohorts in New York State (total n = 463). The first cohort showed only a 5.4% positivity but the second cohort (n=227) had a positivity rate of 41%, with sensitivity in NPS, NS and saliva of 97.9%, 87.1%, and 87.1%, respectively. Whether the reduced sensitivity of NS or saliva is acceptable must be assessed in the settings where they are used. However, we sought to improve on it by validating a method to mix the two sample types, as the combination of nasal swab and saliva resulted in 94.6% SARS-CoV-2 detection sensitivity. Spiking experiments showed that combining them did not adversely affect the detection sensitivity in either. Virus stability in saliva was also investigated, with and without the addition of commercially available stabilizing solutions. The virus was stable in saliva at both 4°C and room temperature for up to 7 days. The addition of stabilizing solutions did not enhance stability and in some situations reduced detectable virus levels.


Author(s):  
Sara B Griesemer ◽  
Greta Van Slyke ◽  
Dylan Ehrbar ◽  
Klemen Strle ◽  
Tugba Yildirim ◽  
...  

AbstractIdentifying SARS-CoV-2 infections through aggressive diagnostic testing remains critical in tracking and curbing the spread of the COVID-19 pandemic. Collection of nasopharyngeal swabs (NPS), the preferred sample type for SARS-CoV-2 detection, has become difficult due to the dramatic increase in testing and consequential supply strain. Therefore, alternative specimen types have been investigated, that provide similar detection sensitivity with reduced health care exposure and potential for self-collection. In this study, the detection sensitivity of SARS-CoV-2 in nasal swabs (NS) and saliva was compared to that of NPS, using matched specimens from two outpatient cohorts in New York State (total n = 463). The first cohort showed only a 5.4% positivity but the second cohort (n=227) had a positivity rate of 41%, with sensitivity in NPS, NS and saliva of 97.9%, 87.1%, and 87.1%, respectively. Whether the reduced sensitivity of NS or saliva is acceptable must be assessed in the settings where they are used. However, we sought to improve on it by validating a method to mix the two sample types, as the combination of nasal swab and saliva resulted in 94.6% SARS-CoV-2 detection sensitivity. Spiking experiments showed that combining them did not adversely affect the detection sensitivity in either. Virus stability in saliva was also investigated, with and without the addition of commercially available stabilizing solutions. The virus was stable in saliva at both 4°C and room temperature for up to 7 days. The addition of stabilizing solutions did not enhance stability and in some situations reduced detectable virus levels.


Sign in / Sign up

Export Citation Format

Share Document