scholarly journals Detection and Discrimination of Classical and Atypical L-Type Bovine Spongiform Encephalopathy by Real-Time Quaking-Induced Conversion

2015 ◽  
Vol 53 (4) ◽  
pp. 1115-1120 ◽  
Author(s):  
Christina D. Orrú ◽  
Alessandra Favole ◽  
Cristiano Corona ◽  
Maria Mazza ◽  
Matteo Manca ◽  
...  

Statutory surveillance of bovine spongiform encephalopathy (BSE) indicates that cattle are susceptible to both classical BSE (C-BSE) and atypical forms of BSE. Atypical forms of BSE appear to be sporadic and thus may never be eradicated. A major challenge for prion surveillance is the lack of sufficiently practical and sensitive tests for routine BSE detection and strain discrimination. The real-time quaking-induced conversion (RT-QuIC) test, which is based on prion-seeded fibrillization of recombinant prion protein (rPrPSen), is known to be highly specific and sensitive for the detection of multiple human and animal prion diseases but not BSE. Here, we tested brain tissue from cattle affected by C-BSE and atypical L-type bovine spongiform encephalopathy (L-type BSE or L-BSE) with the RT-QuIC assay and found that both BSE forms can be detected and distinguished using particular rPrPSensubstrates. Specifically, L-BSE was detected using multiple rPrPSensubstrates, while C-BSE was much more selective. This substrate-based approach suggests a diagnostic strategy for specific, sensitive, and rapid detection and discrimination of at least some BSE forms.

2016 ◽  
Vol 54 (3) ◽  
pp. 676-686 ◽  
Author(s):  
Kentaro Masujin ◽  
Christina D. Orrú ◽  
Kohtaro Miyazawa ◽  
Bradley R. Groveman ◽  
Lynne D. Raymond ◽  
...  

Prion diseases of cattle include the classical bovine spongiform encephalopathy (C-BSE) and the atypical H-type BSE (H-BSE) and L-type BSE (L-BSE) strains. Although the C- and L-BSE strains can be detected and discriminated by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays, no such test has yet been described for the detection of H-BSE or the discrimination of each of the major bovine prion strains. Here, we demonstrate an RT-QuIC assay for H-BSE that can detect as little as 10−9dilutions of brain tissue and neat cerebrospinal fluid samples from clinically affected cattle. Moreover, comparisons of the reactivities with different recombinant prion protein substrates and/or immunoblot band profiles of proteinase K-treated RT-QuIC reaction products indicated that H-, L-, and C-BSE have distinctive prion seeding activities and can be discriminated by RT-QuIC on this basis.


2006 ◽  
Vol 87 (12) ◽  
pp. 3753-3761 ◽  
Author(s):  
Martin Eiden ◽  
Gottfried J. Palm ◽  
Winfried Hinrichs ◽  
Ulrich Matthey ◽  
Ralph Zahn ◽  
...  

This study describes the conversion of murine PrPC by PrPSc from three different mouse scrapie strains (ME7, 87V and 22A) and from a mouse-passaged bovine spongiform encephalopathy (BSE) strain (BSE/Bl6). This was demonstrated by a modified, non-radioactive, cell-free conversion assay using bacterial prion protein, which was converted into a proteinase K (PK)-resistant fragment designated PrPres. Using this assay, newly formed PrPres could be detected by an antibody that discriminated de novo PrPres and the original PrPSc seed. The results suggested that PrPres formation occurs in three phases: the first 48 h when PrPres formation is delayed, followed by a period of substantially accelerated PrPres formation and a plateau phase when a maximum concentration of PrPres is reached after 72 h. The conversion of prokaryotically expressed PrPC by ME7 and BSE prions led to unglycosylated, PK-digested, abnormal PrPres fragments, which differed in molecular mass by 1 kDa. Therefore, prion strain phenotypes were retained in the cell-free conversion, even when recombinant PrPC was used as the substrate. Moreover, co-incubation of ME7 and BSE prions resulted in equal amounts of both ME7- and BSE-derived PrPres fragments (as distinguished by their different molecular sizes) and also in a significantly increased total amount of de novo-generated PrPres. This was found to be more than twice the amount of either strain when incubated separately. This result indicates a synergistic effect of both strains during cell-free conversion. It is not yet known whether such a cooperative action between BSE and scrapie prions also occurs in vivo.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Hideyuki Hara ◽  
Hironori Miyata ◽  
Nandita Rani Das ◽  
Junji Chida ◽  
Tatenobu Yoshimochi ◽  
...  

ABSTRACTConformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPCinto PrPScafter infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/Prnp0/0mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScΔOR in their brains. We show here that Tg(PrPΔOR)/Prnp0/0mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrPScΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPCinto PrPScafter infection with BSE prions. However, Tg(PrPΔOR)/Prnp0/0mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/Prnp0/0mice than PrPScin control wild-type mice. Taken together, these results indicate that the OR region of PrPCcould play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions.IMPORTANCEStructure-function relationship studies of PrPCconformational conversion into PrPScare worthwhile to understand the mechanism of the conversion of PrPCinto PrPSc. We show here that, by inoculating Tg(PrPΔOR)/Prnp0/0mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrPCinto PrPScafter infection with RML or 22L scrapie prions and BSE prions. PrPΔOR was efficiently converted into PrPScΔOR after infection with RML and 22L prions. However, the conversion of PrPΔOR into PrPScΔOR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrPCinto PrPScafter infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e84812 ◽  
Author(s):  
Keding Cheng ◽  
Angela Sloan ◽  
Kristen M. Avery ◽  
Michael Coulthart ◽  
Michael Carpenter ◽  
...  

2005 ◽  
Vol 27 (4) ◽  
pp. 6-8
Author(s):  
David R. Brown

Prion diseases are neurodegenerative diseases1 that have been linked together because they may potentially have the same cause. These include the diseases scrapie of sheep and BSE (bovine spongiform encephalopathy) of cattle, and also several human diseases that include sporadic CJD (Creutzfeldt-Jakob) disease and a variety of inherited forms. The inherited forms of prion diseases are linked to mutations within the gene for the prion protein. Around 85% of all human cases of prion disease are sporadic CJD, which is a disease affecting people of around 60 years of age. The cause of this disease remains unknown. Unfortunately, the name of this disease causes some confusion, as it is similar to vCJD (variant CJD), a related disease of much younger people.


2006 ◽  
Vol 81 (3) ◽  
pp. 1524-1527 ◽  
Author(s):  
Yoshifumi Iwamaru ◽  
Takato Takenouchi ◽  
Kazumasa Ogihara ◽  
Megumi Hoshino ◽  
Masuhiro Takata ◽  
...  

ABSTRACT Several lines of evidence suggest that microglia have important roles in the pathogenesis of prion diseases. Here, we establish a novel microglial cell line (MG20) from neonatal tga20 mice that overexpress murine prion protein. After exposure to Chandler scrapie, we observed the replication and accumulation of disease-associated forms of the prion protein in MG20 cells up to the 15th passage. Furthermore, MG20 cells were susceptible to ME7, Obihiro scrapie, and bovine spongiform encephalopathy agents. Thus, MG20 cell lines persistently infected with various murine prion strains provide a useful model for the study of the pathogenesis of prion diseases.


2013 ◽  
Vol 94 (12) ◽  
pp. 2819-2827 ◽  
Author(s):  
Rona Wilson ◽  
Karen Dobie ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Thierry Baron ◽  
...  

The transmission of bovine spongiform encephalopathy (BSE) to humans, leading to variant Creutzfeldt–Jakob disease has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health. Until recently, TSE disease in cattle was thought to be caused by a single agent strain, BSE, also known as classical BSE, or BSE-C. However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. To model the risk to human health, we previously inoculated these two forms of atypical BSE (BASE and BSE-H) into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP) (HuTg) but were unable to detect any signs of TSE pathology in these mice. However, despite the absence of TSE pathology, upon subpassage of some BASE-challenged HuTg mice, a TSE was observed in recipient gene-targeted bovine PrP Tg (Bov6) mice but not in HuTg mice. Disease transmission from apparently healthy individuals indicates the presence of subclinical BASE infection in mice expressing human PrP that cannot be identified by current diagnostic methods. However, due to the lack of transmission to HuTg mice on subpassage, the efficiency of mouse-to-mouse transmission of BASE appears to be low when mice express human rather than bovine PrP.


2004 ◽  
Vol 279 (32) ◽  
pp. 33847-33854 ◽  
Author(s):  
Achim Thomzig ◽  
Sashko Spassov ◽  
Manuela Friedrich ◽  
Dieter Naumann ◽  
Michael Beekes

Sign in / Sign up

Export Citation Format

Share Document