scholarly journals Limitations of the Current Microbial Identification System for Identification of Clinical Yeast Isolates

1998 ◽  
Vol 36 (5) ◽  
pp. 1197-1200 ◽  
Author(s):  
James A. Kellogg ◽  
David A. Bankert ◽  
Vishnu Chaturvedi

The ability of the rapid, computerized Microbial Identification System (MIS; Microbial ID, Inc.) to identify a variety of clinical isolates of yeast species was compared to the abilities of a combination of tests including the Yeast Biochemical Card (bioMerieux Vitek), determination of microscopic morphology on cornmeal agar with Tween 80, and when necessary, conventional biochemical tests and/or the API 20C Aux system (bioMerieux Vitek) to identify the same yeast isolates. The MIS chromatographically analyzes cellular fatty acids and compares the results with the fatty acid profiles in its database. Yeast isolates were subcultured onto Sabouraud dextrose agar and were incubated at 28°C for 24 h. The resulting colonies were saponified, methylated, extracted, and chromatographically analyzed (by version 3.8 of the MIS YSTCLN database) according to the manufacturer’s instructions. Of 477 isolates of 23 species tested, 448 (94%) were given species names by the MIS and 29 (6%) were unidentified (specified as “no match” by the MIS). Of the 448 isolates given names by the MIS, only 335 (75%) of the identifications were correct to the species level. While the MIS correctly identified only 102 (82%) of 124 isolates of Candida glabrata, the predictive value of an MIS identification of unknown isolates asC. glabrata was 100% (102 of 102) because no isolates of other species were misidentified as C. glabrata. In contrast, while the MIS correctly identified 100% (15 of 15) of the isolates of Saccharomyces cerevisiae, the predictive value of an MIS identification of unknown isolates as S. cerevisiae was only 47% (15 of 32), because 17 isolates ofC. glabrata were misidentified as S. cerevisiae. The low predictive values for accuracy associated with MIS identifications for most of the remaining yeast species indicate that the procedure and/or database for the system need to be improved.

Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 199-199 ◽  
Author(s):  
D. B. Langston ◽  
R. D. Walcott ◽  
R. D. Gitaitis ◽  
F. H. Sanders

In September 1998, a fruit rot was reported affecting pumpkin (Cucurbita pepo) in a commercial field in Terrell Co., Georgia. Symptoms on the surface of fruit occurred as round, necrotic spots or cracks a few millimeters in diameter. With age, the tissue surrounding these lesions became soft and wrinkled. A soft rot expanded into the flesh of the pumpkin, originating from the lesions observed on the surface. In time, infected pumpkins totally collapsed. V-shaped, necrotic lesions occurred at the margin of the leaf and extended inward toward the mid-rib. Samples were collected from the field and bacteria were isolated from fruit and leaf lesions onto King's medium B (1). The bacterium isolated was rod shaped, gram negative, nonflourescent, oxidase positive, Tween 80 positive, carboxymethyl cellulose positive, β-OH butyrate positive, and malonate negative. The bacterium reacted positively with polyclonal antibodies specific for the watermelon fruit blotch pathogen Acidivorax avenae subsp. citrulli and was identified as A. avenae subsp. citrulli by MIDI (Microbial Identification System, Newark, DE) according to statistical analysis of fatty acid data. Results from polymerase chain reaction (PCR) amplification of the bacterium isolated from pumpkin yielded 360-bp fragments that, when digested with the restriction enzyme HaeIII, had DNA banding patterns identical to those of stock A. avenae subsp. citrulli DNA. Koch's postulates were completed successfully with 2-week-old watermelon seedlings. This is the first report of A. avenae subsp. citrulli causing fruit rot of pumpkin in Georgia. Reference: (1) E. O. King et al. J. Lab. Clin. Med. 44:301, 1954.


Plant Disease ◽  
2000 ◽  
Vol 84 (7) ◽  
pp. 785-788 ◽  
Author(s):  
R. E. Baird ◽  
R. D. Gitaitis ◽  
D. E. Carling ◽  
S. M. Baird ◽  
P. J. Alt ◽  
...  

Fatty acid methyl esters (FAMEs) of isolates of Rhizoctonia solani AG-4 and AG-7 were characterized by gas chromatography and analyzed with Microbial Identification System software. Palmitic, stearic, and oleic acids were common in all isolates from both anastomosis groups (AGs) and accounted for 95% of the C14 to C18 fatty acids present. Oleic acid, most common in both R. solani AG-4 and AG-7 isolates, accounted for the greatest percentages of total FAMEs. The presence, quantities, or absence of individual fatty acids could not be used for distinguishing AG-4 and AG-7 isolates. Anteisopentadecanoic and 9-heptadecanoic acids, however, were specific to all three AG-7 isolates from Japan but absent in other AG-7 isolates and all AG-4 isolates. Pentadecanoic acid occurred in only two of the R. solani AG-4 isolates, but was not found in any of the AG-7 isolates. The AG-4 isolates could be distinguished from AG-7 isolates when quantities of FAMEs and key FAME ratios were analyzed with cluster analysis and principle components were plotted. Isolates of AG-7 from Arkansas, Indiana, and Georgia appeared to be more closely related to each other than to AG-7 isolates from Japan and Mexico. These differences in FAMEs were sufficiently distinct that isolate geographical variability could be determined. A dendrogram analysis cluster constructed from the FAMEs data showed results similar to that of the principal component analysis. Euclidean distances of total AG-4 isolates were distinct from total AG-7 isolates. The Arkansas and Indiana AG-7 isolates had a similar Euclidean distance to each another but the percentages were different for the AG-7 isolates from Japan and Mexico. In conclusion, variability of the FAMEs identified in this study would not be suitable as the main diagnostic tool for distinguishing individual isolates of R. solaniAG-4 from AG-7.


1988 ◽  
Vol 34 (10) ◽  
pp. 2026-2030 ◽  
Author(s):  
J Kropf ◽  
A M Gressner ◽  
A Negwer

Abstract We examined the efficacy of laminin assay in serum for diagnosis of fibrotic liver diseases. Values for subjects with liver disease significantly (P less than 0.05) exceeded those for healthy subjects and patients with nonhepatic diseases. At a cutoff value of 1.45 kilo-units(arb.)/L (approximately 330 micrograms/L) and an assumed prevalence of fibrotic liver diseases of 0.5, positive and negative predictive values of the test were 0.97 and 0.83, respectively, for the comparison with a healthy reference population and 0.81 and 0.80 for nonhepatic diseased patients. Increases in laminin concentration were positively correlated with the extent of fibrotic transition of the liver. Discrimination between fibrotic and cirrhotic stages of chronic liver diseases by means of laminin assay was better than with the amino-terminal propeptide of type III procollagen. According to the criteria of diagnostic efficacy, we conclude that determination of laminin in serum improves the possibilities of clinical-chemical diagnosis of liver fibrosis and cirrhosis. However, as commonly true for other biochemical tests, determination of laminin cannot replace conventional diagnostic methods.


2013 ◽  
Vol 634-638 ◽  
pp. 1179-1183 ◽  
Author(s):  
Jing Deng ◽  
Hua Chang Wu ◽  
Xing Xiu Zhao ◽  
Jiao Jiao Shi

Sufu is a traditional Chinese fermented food. The safety of spontaneous fermentation products has been concerned by more and more people. A total of four isolates with big clear halos on the casein medium plate were isolated from spontaneous fermented Sufu in southern Sichuan. A1 and A3 most likely belong to Bacillus cereus B according to their phenotype and Biolog Microbial Identification System. B2 was classified in group as Bacillus amyloliquefaciens B with the same methods. A2 was identified as Bacillus subtilis according to their phenotype and 16SrRNA. The safety of the strains are also discussed.


1992 ◽  
Vol 58 (6) ◽  
pp. 2089-2092 ◽  
Author(s):  
J M Klingler ◽  
R P Stowe ◽  
D C Obenhuber ◽  
T O Groves ◽  
S K Mishra ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1135-1135 ◽  
Author(s):  
K. Rungnapha ◽  
S. H. Yu ◽  
G. L. Xie

In December 2006, a rot symptom of unknown etiology was observed on stems of plants (Euphorbia pulcherrima cv. Fu-xing) at a flower nursery in the Zhejiang Province of China where we had previously reported leaf spot of poinsettia caused by Xanthomonas campestris (2). Chlorotic spots anywhere along the stem and purplish black petioles were the first noticeable symptoms. The spots rapidly coalesced, forming large irregular chlorotic areas. Petioles turned black and shriveled and affected leaves wilted. Infected tissues were soft and water soaked. Ten bacterial strains were isolated from the diseased samples and five were selected for identification. They were similar to those of the standard reference strains of Pectobacterium chrysanthemi (Dickeya sp.), LMG 2804 from Belgium and ZUPB20056 from China, in phenotypic tests based on the Biolog Microbial Identification System, version 4.2 (Biolog Inc., Hayward, CA), pathogenicity tests, gas chromatography of fatty acid methyl esters (FAME) using the Microbial Identification System (MIDI Inc, Newark, DE) with aerobic bacterial library (TABA50), and transmission electron microscopy (TEM,KYKY-1000B, Japan). All strains tested were gram-negative facultative anaerobic rods measuring 1.5 to 3.6 × 0.6 to 1.1 μm, with peritrichous flagella. Colonies were gray-white and slightly raised with smooth margins on nutrient agar. They were negative for trehalose and positive for phosphatase production and reducing substances from sucrose. A hypersensitive reaction was observed on tobacco cv. Benshi, 24 h after inoculation. All five isolates, LMG 2804, and ZUPB20056 were identified as P. chrysanthemi (Dickeya sp.) with a Biolog similarity index of 0.58 to 0.83, 0.68, and 0.72 and a FAME similarity index of 0.52 to 0.80, 0.59, and 0.70, respectively. Identification as P. chrysanthemi (Dickeya sp.) was confirmed by PCR with specific primers used by Nassar et al (3). Koch's postulates were completed with the inoculation of 12 4-month-old intact poinsettia plants of cv. Fu-xing with cell suspensions containing 108 CFU/ml by a pinprick at the base of the stem. All five strains induced stem infection similar to those observed in natural infections. No symptoms were noted on the two control plants inoculated with sterilized distilled water by the same method. The bacterium was reisolated from symptomatic stems of poinsettia plants. P. chrysanthemi (Dickeya sp.) was first reported in United States as the cause of bacterial stem rot of poinsettia in 1972 (1). To our knowledge, this is the first report of poinsettia stem rot caused by P. chrysanthemi (Dickeya sp.) in China. The disease cycle and the control strategies of the bacterial stem rot of poinsettia in the regions are being further studied. References: (1) H. A. J. Hoitink et al. Plant Dis. Rep. 56:480, 1972. (2) B. Li et al. Plant Pathol. 55:293, 2006. (3) A. A. Nassar et al. Appl. Environ. Microbiol. 62:2228, 1996.


Plant Disease ◽  
2008 ◽  
Vol 92 (5) ◽  
pp. 832-832 ◽  
Author(s):  
L. H. Xu ◽  
G. L. Xie ◽  
B. Li ◽  
B. Zhu ◽  
F. S. Xu ◽  
...  

In the spring of 2006, a new bacterial disease was noted in pear orchards near Hangzhou, Zhejiang Province, China. The disease caused severe blossom blast on pears (Pyrus pyrifolia; cv. Cuiguan). Early symptoms of the disease included blackening of the calyx end of developing fruit, blackening of blossom clusters while leaves of affected blossom clusters appeared normal, or death of clusters consisting of both blossoms and leaves. Later, tips of twigs turned dark brown and died. No bacterial ooze was observed. Twelve bacterial isolates were recovered from ten samples of buds and blossoms. Six isolates were selected for identification. They were similar to those of the reference strains of Pseudomonas syringae pv. syringae LMG5570 and LMG 2230 from Belgium in phenotypic tests on the basis of the Biolog Microbial Identification System (version 4.2; Biolog Inc., Hayward, CA), pathogenicity tests, gas chromatographic analysis of fatty acid methyl esters (FAMEs) using the Microbial Identification System (MIDI Inc., Newark, DE) with aerobic bacterial library (TABA50), and electron microscopy (TEM, KYKY-1000B, Japan). All isolates tested were gram-negative, aerobic rods measuring 1.5 to 2.4 × 0.5 to 0.6 μm with 2 to 4 polar flagella. Fluorescent green diffusible pigment was produced on King's Medium B. Colonies were gray-white and slightly raised with smooth margins on nutrient agar. They produced levan on sucrose nutrient agar. A hypersensitive reaction was observed on tobacco cv. Benshi 24 h after inoculation. All isolates were identified as P. syringae pv. syringae with Biolog similarity index of 0.57 to 0.86 and FAME similarity index of 0.58 to 0.81. Identification as P. syringae pv. syringae was confirmed using 16S rDNA universal primers (2,3): 5′-AGA GTT TGA TCA TGG CTC AG-3′ forward primer, 5′-ACG GTT ACC TTG TTA CGA CTT-3′ reverse primer. The PCR fragments of the three isolates were sequenced and compared with sequences in GenBank. They had 99% similiarity with P. syringae pv. syringae 16S rRNA gene strain NCPPB 3869. Koch's postulates were conducted on buds of the original pear cultivar growing in pots and detached pear blossoms in flasks by spray inoculation with cell suspensions containing 108 CFU/ml of the six isolates at 18 to 22°C with two replications. The bacteria induced symptoms on buds and blossoms similar to those observed in the field. The bacterium was reisolated from symptomatic pear buds and internal ovary tissues. P. syringae pv. syringae was first reported in England as the cause of pear blossom blast in 1914 (1). After searching all the Chinese agricultural databases and major journals (National Knowledge Infrastructure database, Vip Chinese periodical database, Chinese wanfang database, China InfoBank, Scientia Agricultura Sinica, Acta Phytopathologica Sinica, Acta Phytophylacica Sinica, and Journal of Fruit Science), to our knowledge, this is the first report of pear blossom blast caused by P. syringae pv. syringae in China. The disease cycle on pear trees and the control strategies in the regions are being further studied. References: (1) B. P. Barker et al. Ann. Appl. Biol. 1:85, 1914. (2) U. Edward et al. Nucleic Acids Res. 17:7843,1989. (3) B. Li et al. J. Phytopathol. 34:141, 2006.


Sign in / Sign up

Export Citation Format

Share Document