scholarly journals Identification of Toxin A-Negative, Toxin B-Positive Clostridium difficile by PCR

1998 ◽  
Vol 36 (8) ◽  
pp. 2178-2182 ◽  
Author(s):  
Haru Kato ◽  
Naoki Kato ◽  
Kunitomo Watanabe ◽  
Naoichi Iwai ◽  
Haruhi Nakamura ◽  
...  

Toxigenic strains of Clostridium difficile have been reported to produce both toxins A and B nearly always, and nontoxigenic strains have been reported to produce neither of these toxins. Recent studies indicate that it is not always true. We established a PCR assay to differentiate toxin A-negative, toxin B-positive (toxin A−, toxin B+) strains from both toxin-positive (toxin A+, toxin B+) strains and both toxin-negative (toxin A−, toxin B−) strains as an alternative to cell culture assay and enzyme-linked immunosorbent assay (ELISA). By using the PCR primer set NK11 and NK9 derived from the repeating sequences of the toxin A gene, a shorter segment (ca. 700 bp) was amplified from toxin A−, toxin B+ strains compared to the size of the segment amplified from toxin A+, toxin B+ strains (ca. 1,200 bp), and no product was amplified from toxin A−, toxin B− strains. We examined a total of 421 C. difficile isolates by PCR. Of these, 48 strains showed a shorter segment by the PCR, were negative by ELISAs for the detection of toxin A, and were positive by cell culture assay. Although the cytotoxin produced by the toxin A−, toxin B+ strains was neutralized by anti-toxin B serum, the appearance of the cytotoxic effects on Vero cell monolayers was distinguishable from that of toxin A+, toxin B+ strains. By immunoblotting, the 44 toxin A−, toxin B+ strains were typed to serogroup F and the remaining four strains were serogroup X. Pulsed-field gel electrophoresis separated the 48 strains into 19 types. The PCR assay for the detection of the repeating sequences combined with PCR amplification of the nonrepeating sequences of either the toxin A or the toxin B gene is indicated to be useful for differentiating toxin A−, toxin B+ strains from toxin A+, toxin B+ and toxin A−, toxin B− strains and will contribute to elucidation of the precise role of toxin A−, toxin B+ strains in intestinal diseases.

2007 ◽  
Vol 75 (6) ◽  
pp. 2826-2832 ◽  
Author(s):  
Chandrabali Ghose ◽  
Anuj Kalsy ◽  
Alaullah Sheikh ◽  
Julianne Rollenhagen ◽  
Manohar John ◽  
...  

ABSTRACT Clostridium difficile is the leading cause of nosocomial infectious diarrhea. C. difficile produces two toxins (A and B), and systemic and mucosal anti-toxin A antibodies prevent or limit C. difficile-associated diarrhea. To evaluate whether transcutaneous immunization with formalin-treated C. difficile toxin A (CDA) induces systemic and mucosal anti-CDA immune responses, we transcutaneously immunized three cohorts of mice with CDA with or without immunoadjuvantative cholera toxin (CT) on days 0, 14, 28, and 42. Mice transcutaneously immunized with CDA and CT developed prominent anti-CDA and anti-CT immunoglobulin G (IgG) and IgA responses in serum and anti-CDA and anti-CT IgA responses in stool. Sera from immunized mice were able to neutralize C. difficile toxin A activity in an in vitro cell culture assay. CDA itself demonstrated adjuvant activity and enhanced both serum and stool anti-CT IgA responses. Our results suggest that transcutaneous immunization with CDA toxoid may be a feasible immunization strategy against C. difficile, an important cause of morbidity and mortality against which current preventative strategies are failing.


2011 ◽  
Vol 41 (8) ◽  
pp. 1430-1435 ◽  
Author(s):  
Rodrigo Otávio Silveira Silva ◽  
Felipe Masiero Salvarani ◽  
Eduardo Coulaud da Costa Cruz Júnior ◽  
Prhiscylla Sadanã Pires ◽  
Renata Lara Resende Santos ◽  
...  

Clostridium difficile has emerged as a major cause of neonatal colitis in piglets, displacing classic bacterial pathogens. However, there is no information regarding the distribution of this microorganism in pig farms in Brazil. In the present study, the presence of toxins A/B and of C. difficile strains in stool samples from 60 diarrheic or non-diarrheic newborn piglets (one to seven days old), from 15 different farms, was studied. The presence of toxins A/B was detected by ELISA and PCR was used to identify toxin A, toxin B and binary toxin gene in each isolated strain. C. difficile A/B toxins were detected in ten samples (16.7%). Of these, seven were from diarrheic and three were from non-diarrheic piglets. C. difficile was recovered from 12 out of 60 (20%) fecal samples. Of those, three strains were non-toxigenic (A-B-) and nine were toxigenic. Of the nine toxigenic strains, four were A+B+ strains and five were A-B+ strains. The presence of binary toxin observed in the present study was much higher (50%) than in previously reported studies. All three non-toxigenic strains were isolated from otherwise healthy piglets. The results suggest the occurrence of neonatal diarrhea by C. difficile in farms in Brazil.


2015 ◽  
Vol 53 (11) ◽  
pp. 3702-3704 ◽  
Author(s):  
Grace O. Androga ◽  
Julie Hart ◽  
Niki F. Foster ◽  
Adrian Charles ◽  
David Forbes ◽  
...  

Large clostridial toxin-negative, binary toxin-positive (A−B−CDT+) strains ofClostridium difficileare almost never associated with clinically significantC. difficileinfection (CDI), possibly because such strains are not detected by most diagnostic methods. We report the isolation of an A−B−CDT+ribotype 033 (RT033) strain ofC. difficilefrom a young patient with ulcerative colitis and severe diarrhea.


2017 ◽  
Vol 56 (3) ◽  
Author(s):  
M. J. T. Crobach ◽  
N. Duszenko ◽  
E. M. Terveer ◽  
C. M. Verduin ◽  
E. J. Kuijper

ABSTRACT Multistep algorithmic testing in which a sensitive nucleic acid amplification test (NAAT) is followed by a specific toxin A and toxin B enzyme immunoassay (EIA) is among the most accurate methods for Clostridium difficile infection (CDI) diagnosis. The obvious shortcoming of this approach is that multiple tests must be performed to establish a CDI diagnosis, which may delay treatment. Therefore, we sought to determine whether a preliminary diagnosis could be made on the basis of the quantitative results of the first test in algorithmic testing, which provide a measure of organism burden. To do so, we retrospectively analyzed two large collections of samples ( n = 2,669 and n = 1,718) that were submitted to the laboratories of two Dutch hospitals for CDI testing. Both hospitals apply a two-step testing algorithm in which a NAAT is followed by a toxin A/B EIA. Of all samples, 208 and 113 samples, respectively, tested positive by NAAT. Among these NAAT-positive samples, significantly lower mean quantification cycle ( C q ) values were found for patients whose stool eventually tested positive for toxin, compared with patients who tested negative for toxin (mean C q values of 24.4 versus 30.4 and 26.8 versus 32.2; P < 0.001 for both cohorts). Receiver operating characteristic curve analysis was performed to investigate the ability of C q values to predict toxin status and yielded areas under the curve of 0.826 and 0.854. Using the optimal C q cutoff values, prediction of the eventual toxin A/B EIA results was accurate for 78.9% and 80.5% of samples, respectively. In conclusion, C q values can serve as predictors of toxin status but, due to the suboptimal correlation between the two tests, additional toxin testing is still needed.


2018 ◽  
Vol 2 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Yi Han ◽  
Joan King ◽  
Marlene E Janes

Abstract Objectives: Clostridium difficile is the major cause of infectious diarrhoea in humans after antimicrobial treatment. Clostridium difficile has been isolated from food animals and meat. The main purpose of this study was to characterize C. difficile isolated from retail lettuce and determine the antibiotic resistance using five common clinical-selected antibiotics (metronidazole, vancomycin, clindamycin, erythromycin, and cefotaxime). Materials and Methods: Lettuce samples (grown in California, Arkansas, and Louisiana) were purchased from retail stores. Results: Toxigenic C. difficile was isolated from 13.8 per cent (41/297) of the lettuce samples. Among the toxigenic isolates, only 82.9 per cent (34/41) produced toxin B, 17.1 per cent (7/41) produced both toxin A and toxin B, and two of the Louisiana C. difficile isolates were identified as ribotype 027. Under the treatment of the five antibiotics, the virulence C. difficile isolates were identified as having antibiotic resistance to metronidazole, vancomycin, and erythromycin. Conclusion: The present study reports the highest prevalence of toxigenic C. difficile in US retail lettuce. The antibiotic resistance to metronidazole, vancomycin, and erythromycin of the isolated C. difficile from retail lettuces could lead to public health concerns.


2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Alice Banz ◽  
Aude Lantz ◽  
Brigitte Riou ◽  
Agnès Foussadier ◽  
Mark Miller ◽  
...  

ABSTRACT Guidelines recommend the use of an algorithm for the laboratory diagnosis of Clostridium difficile infection (CDI). Enzyme immunoassays (EIAs) detecting C. difficile toxins cannot be used as standalone tests due to suboptimal sensitivity, and molecular tests suffer from nonspecificity by detecting colonization. Sensitive immunoassays have recently been developed to improve and simplify CDI diagnosis. Assays detecting CD toxins have been developed using single-molecule array (SIMOA) technology. SIMOA performance was assessed relative to a laboratory case definition of CDI defined by positive glutamate dehydrogenase (GDH) screen and cell cytotoxicity neutralizing assay (CCNA). Samples were tested with SIMOA assays and a commercial toxin EIA to compare performance, with discrepancy resolution using a commercial nucleic acid-based test and a second cell cytotoxicity assay. The SIMOA toxin A and toxin B assays showed limits of detection of 0.6 and 2.9 pg/ml, respectively, and intra-assay coefficients of variation of less than 10%. The optimal clinical thresholds for the toxin A and toxin B assays were determined to be 22.1 and 18.8 pg/ml, respectively, with resultant sensitivities of 84.8 and 95.5%. In contrast, a high-performing EIA toxin test had a sensitivity of 71.2%. Thus, the SIMOA assays detected toxins in 24% more samples with laboratory-defined CDI than the high performing toxin EIA (95% [63/66] versus 71% [47/66]). This study shows that SIMOA C. difficile toxin assays have a higher sensitivity than currently available toxin EIA and have the potential to improve CDI diagnosis.


2016 ◽  
Vol 37 (9) ◽  
pp. 1087-1093 ◽  
Author(s):  
Mohammad AlGhounaim ◽  
Yves Longtin ◽  
Milagros Gonzales ◽  
Joanna Merckx ◽  
Nicholas Winters ◽  
...  

BACKGROUNDPolymerase chain reaction (PCR) assays based on the detection of the toxin B gene are replacing enzyme-linked immunosorbent assay (ELISA)–based toxin production detection or cell cytotoxicity assay in most laboratories.OBJECTIVETo determine the proportion of pediatric patients diagnosed withClostridium difficile infection by PCR who would have also been diagnosed by ELISA and to compare the clinical characteristics of PCR+/ELISA+ vs PCR+/ELISA− patients.METHODSUsing the microbiology laboratory information system, stool samples positive for C. difficile by PCR between October 2010 and July 2014 were identified. Using frozen stool specimens, an ELISA for toxin A and B was performed. A retrospective medical chart review was conducted to obtain demographic and clinical data. Duplicate samples were excluded.RESULTSA total of 136 PCR-positive samples underwent ELISA testing: 54 (40%) were positive for toxin A or B. The mean (SD) age of the entire cohort was 8.5 (6.2) years. There was no difference in age, gender, clinical manifestation, previous medical problems, and management between patients positive or negative by ELISA. However, patients positive by ELISA were more likely to have had a recent exposure to antibiotics (67.9% vs 50%; crude odds ratio, 2.1 [95% CI, 1.03–4.28]).CONCLUSIONIn our pediatric population, 60% of patients with C. difficile diagnosed by PCR had no toxin detectable by ELISA. ELISA-negative patients were less likely to have received an antibiotic recently compared with ELISA-positive patients. These results highlight the need to standardize laboratory criteria for the diagnosis of C. difficile infections in children.Infect Control Hosp Epidemiol 2016;37:1087–1093


Sign in / Sign up

Export Citation Format

Share Document