scholarly journals ArabidopsisHistone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection

2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Tami Coursey ◽  
Milica Milutinovic ◽  
Elizabeth Regedanz ◽  
Jelena Brkljacic ◽  
David M. Bisaro

ABSTRACTHistone posttranslational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirusCabbage leaf curl virus(CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 (EML1) and EML3, which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutantArabidopsisplants exhibit contrasting hypersusceptible (eml1) and tolerant (eml3) responses to CaLCuV infection and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Furthermore, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting.IMPORTANCEHistone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter chromatin structure or activity. In this study, CaLCuV was used to characterize the activities of twoArabidopsisAgenet domain histone readers, EML1 and EML3. We show thateml1mutants are hypersusceptible to CaLCuV, whereaseml3plants are more tolerant of infection than wild-type plants. We also demonstrate that EML1 and EML3 associate with histones and viral chromatinin plantaand that both proteins bind peptides containing H3K36, a PTM associated with active gene expression. Consistent with antiviral activity, EML1 suppresses CaLCuV gene expression and reduces Pol II access to viral chromatin. By linking EML1 and EML3 to pathogenesis, these studies have expanded our knowledge of histone reader proteins and uncovered an additional level of viral chromatin regulation.

2021 ◽  
Author(s):  
Eleonora Forte ◽  
Fatma Ayaloglu Butun ◽  
Christian Marinaccio ◽  
Matthew J. Schipma ◽  
Andrea Piunti ◽  
...  

HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27. Importance. HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.


2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Kayvan Etebari ◽  
Rhys Parry ◽  
Marie Joy B. Beltran ◽  
Michael J. Furlong

ABSTRACT Oryctes rhinoceros nudivirus (OrNV) is a double-stranded DNA (dsDNA) virus which has been used as a biocontrol agent to suppress the coconut rhinoceros beetle (Oryctes rhinoceros) in Southeast Asia and the Pacific Islands. A new wave of O. rhinoceros incursions in Oceania is thought to be related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles. In this study, chronically infected beetles were collected from Philippines, Fiji, Papua New Guinea (PNG), and the Solomon Islands (SI). RNA sequencing (RNA-seq) was performed to investigate the global viral gene expression profiles and for comparative genomic analysis of structural variations. Maximum likelihood phylogenic analysis indicated that OrNV strains from the SI and Philippines are closely related, while OrNV strains from PNG and Fiji formed a distinct adjacent clade. We detected several polymorphic sites with a frequency higher than 35% in 892 positions of the viral genome. Nonsynonymous mutations were detected in several hypothetical proteins and 15 nudivirus core genes, such as gp034, lef-8, lef-4, and vp91. We found limited evidence of variation in viral gene expression among geographic populations. Only a few genes, such as gp01, gp022, and gp107, were differentially expressed among different strains. Additionally, small RNA sequencing from the SI population suggested that OrNV is targeted by the host RNA interference (RNAi) response with abundant 21-nucleotide small RNAs. Some of these genomic changes are specific to the geographic population and could be related to particular phenotypic characteristics of the strain, such as viral pathogenicity or transmissibility, and this requires further investigation. IMPORTANCE Oryctes rhinoceros nudivirus has been an effective biocontrol agent against the coconut rhinoceros beetle in Southeast Asia and the Pacific Islands for decades. The recent outbreak of these beetles in many South Pacific islands has had a significant impact on livelihoods in the region. It has been suggested that the resurgence and spread of the pest are related to the presence of low-virulence isolates of OrNV or virus-tolerant haplotypes of beetles. We examined viral genomic and transcriptional variations in chronically infected beetles from different geographical populations. A high number of polymorphic sites among several geographical strains of OrNV were identified, but potentially only a few of these variations in the genome are involved in functional changes and can potentially alter the typical function. These findings provide valuable resources for future studies to improve our understanding of the OrNV genetic variations in different geographic regions and their potential link to virus pathogenicity.


2009 ◽  
Vol 90 (10) ◽  
pp. 2364-2374 ◽  
Author(s):  
Ian J. Groves ◽  
Matthew B. Reeves ◽  
John H. Sinclair

Human cytomegalovirus (HCMV) lytic gene expression occurs in a regulated cascade, initiated by expression of the viral major immediate-early (IE) proteins. Transcribed from the major IE promoter (MIEP), the major IE genes regulate viral early and late gene expression. This study found that a substantial proportion of infecting viral genomes became associated with histones immediately upon infection of permissive fibroblasts at low m.o.i. and these histones bore markers of repressed chromatin. As infection progressed, however, the viral MIEP became associated with histone marks, which correlate with the known transcriptional activity of the MIEP at IE time points. Interestingly, this chromatin-mediated repression of the MIEP at ‘pre-IE’ times of infection could be overcome by inhibition of histone deacetylases, as well as by infection at high m.o.i., and resulted in a temporal advance of the infection cycle by inducing premature viral early and late gene expression and DNA replication. As well as the MIEP, and consistent with previous observations, the viral early and late promoters were also initially associated with repressive chromatin. However, changes in histone modifications around these promoters also occurred as infection progressed, and this correlated with the known temporal regulation of the viral early and late gene expression cascade. These data argue that the chromatin structure of all classes of viral genes are initially repressed on infection of permissive cells and that the chromatin structure of HCMV gene promoters plays an important role in regulating the time course of viral gene expression during lytic infection.


1999 ◽  
Vol 90 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Nicholas M. Boulis ◽  
Vikas Bhatia ◽  
Theodore I. Brindle ◽  
Harland T. Holman ◽  
Daniel J. Krauss ◽  
...  

Object. The present study characterizes the time course and loci of gene expression induced by the administration of adenoviral vectors into spinal cord. Although a marked inflammatory response to these vectors occurred, no effect on spinal cord function was seen in the 1st postoperative week. The expression of transgenic genes delivered by viral vectors is being exploited throughout the nervous system. The present study utilized adenoviral vectors containing the Rous sarcoma virus (RSV) promoter and a nuclear localization signal to achieve transgenic expression in mammalian spinal cord. Methods. Initial experiments utilizing the vector Ad.RSVlacZ (1012 particles/ml) injected into the region of the central canal resulted in viral gene expression stretching over approximately 1.2 cm of spinal cord. Gene expression was first detected 3 days following viral administration and lasted until postinjection Day 14 with peak expression at Day 7. A variety of cell types in both white and gray matter expressed lacZ. Transgenic expression of the neurotrophin nerve growth factor (NGF) was achieved using injections of Ad.RSVNGF. On histological examination mononuclear inflammatory infiltrate and gliosis were revealed surrounding the injection sites of spinal cords receiving adenovirus but not vehicle. To assess spinal cord function during viral gene expression, animals previously trained in an operant runway task were tested at 7 days postinjection (the peak of viral gene expression) and demonstrated no changes in spinal cord function. Conclusions. Results of this study using adenoviral neurotrophic gene transfer indicate that it provided an effective tool for the delivery of potentially therapeutic proteins to the injured or diseased spinal cord.


2009 ◽  
Vol 84 (3) ◽  
pp. 1366-1375 ◽  
Author(s):  
Meaghan H. Hancock ◽  
Anna R. Cliffe ◽  
David M. Knipe ◽  
James R. Smiley

ABSTRACT The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure.


2006 ◽  
Vol 26 (1) ◽  
pp. 250-260 ◽  
Author(s):  
Karen Adelman ◽  
Wenxiang Wei ◽  
M. Behfar Ardehali ◽  
Janis Werner ◽  
Bing Zhu ◽  
...  

ABSTRACT The Paf1 complex in yeast has been reported to influence a multitude of steps in gene expression through interactions with RNA polymerase II (Pol II) and chromatin-modifying complexes; however, it is unclear which of these many activities are primary functions of Paf1 and are conserved in metazoans. We have identified and characterized the Drosophila homologs of three subunits of the yeast Paf1 complex and found striking differences between the yeast and Drosophila Paf1 complexes. We demonstrate that although Drosophila Paf1, Rtf1, and Cdc73 colocalize broadly with actively transcribing, phosphorylated Pol II, and all are recruited to activated heat shock genes with similar kinetics; Rtf1 does not appear to be a stable part of the Drosophila Paf1 complex. RNA interference (RNAi)-mediated depletion of Paf1 or Rtf1 leads to defects in induction of Hsp70 RNA, but tandem RNAi-chromatin immunoprecipitation assays show that loss of neither Paf1 nor Rtf1 alters the density or distribution of phosphorylated Pol II on the active Hsp70 gene. However, depletion of Paf1 reduces trimethylation of histone H3 at lysine 4 in the Hsp70 promoter region and significantly decreases the recruitment of chromatin-associated factors Spt6 and FACT, suggesting that Paf1 may manifest its effects on transcription through modulating chromatin structure.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 154-154 ◽  
Author(s):  
Zachary C. Murphy ◽  
Tyler A Couch ◽  
Jacquelyn Lillis ◽  
Michael Getman ◽  
Kimberly Lezon-Geyda ◽  
...  

Maturation of erythroid progenitors is associated with significant changes in gene expression in the context of a nucleus that dramatically decreases in size in preparation for enucleation, and is regulated by the coordinated action of transcriptional regulators and epigenetic modifiers. In eukaryotes, all DNA is bound by histone proteins into chromatin. Posttranslational modifications of the N-terminal "tails" of these proteins are key regulators of chromatin structure and gene expression. We hypothesized that terminal erythroid maturation is associated with changes in the abundance of specific histone posttranslational modifications. To address this hypothesis, we utilized mass spectrometry to perform an unbiased assessment of the abundance histone post translational modifications in maturing erythroblasts. We cultured peripheral blood CD34+ hematopoietic stem and progenitor cells (HSPCs) down the erythroid lineage using a semi-synchronous culture system (as outlined in Gautier et al. Cell Reports 2016), and sent cells for mass spectrometry on day 7 of erythroid maturation, when the cells are predominately basophilic erythroblasts, and on day 12 of erythroid maturation, when they are predominately poly- and ortho- chromatic erythroblasts. The maturation stage of the cells was confirmed by both cytospins and imaging flow cytometric analyses. Two independent replicates were performed and key results confirmed by western blotting. Terminal erythroid maturation was associated with a dramatic decline in the abundance of multiple histone marks associated with active transcription elongation, including Histone H3 lysine 36 di- and tri-methylation (H3K36me2, H3K36me3), and Histone H3 Lysine 79 di-methylation (H3K79me2). Surprisingly, this was not accompanied by an increase in the abundance of repressive heterochromatin marks (H3K27me3, H3K9me3, and H4K20me3) or a global decline in histone acetylation. Histone H4 lysine 16 acetylation (H4K16Ac), associated with RNA polymerase II pause release (Kapoor-Vazirani MCB 2011) significantly declined, but multiple acetylation marks including H3K36Ac and H3K23Ac increased in abundance. As expected, the abundance histone H4 lysine 20 mono-methylation (H4K20me1), which is implicated both in erythroblast chromatin condensation (Malik Cell Reports 2017) and the regulation of RNA Polymerase II pausing (Kapoor-Vazirani MCB 2011) also significantly increased. Consistent with these data, integration of RNA-seq and ChIP-seq data identified 3,058 genes whose expression decreased from basophilic erythroblast to orthochromatic erythroblasts, which lost enrichment for H3K36me3 (mark of active elongation) without accumulating H3K27me3 (heterochromatin mark). Based on these data, we hypothesized that RNA polymerase II pausing is a critical regulator of gene expression in maturing erythroblasts. RNA Polymerase II (Pol II) pausing is a highly regulated mechanism of transcriptional regulation, whereby transcription is initiated, but pauses 30-60bp downstream of the transcription start site. For paused Pol II to be released into active elongation, pTEFb must hyper-phosphorylate Serine 2 of the Pol II c-terminal domain (CTD). Importantly, pTEFb can be directed to specific loci through interaction with transcription factors, including GATA1 (Elagib Blood 2008; Bottardi NAR 2011). Hexim1 is a key regulator of Pol II pausing that sequesters pTEFb and inhibits its action. Consistent with a central role for Pol II pausing dynamics in the regulation of terminal erythroid maturation, Hexim1 is highly expressed in erythroid cells compared to most other cell types and its expression increases during terminal erythroid maturation. Conversely, the expression of CCNT1 and CKD9, the components of pTEFb, decline during terminal maturation, and the level of elongation competent (Ser2 and Ser2/Ser5 CTD phosphorylated) Pol II also decreases dramatically. To gain insights into the function of Pol II pausing in maturing erythroblasts, we induced Hexim1 expression in HUDEP2 cells (Kurita PLoS One 2013) using hexamethane bisacetamide (HMBA). HMBA treatment increased Hexim1 levels a dose dependent manner and was associated with gene expression and phenotypic changes suggestive of accelerated erythroid maturation. Together, these data suggest that RNA Pol II pausing dynamics are an important regulator of terminal erythroid maturation. Disclosures No relevant conflicts of interest to declare.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1054
Author(s):  
Nur Firdaus Isa ◽  
Olivier Bensaude ◽  
Nadiah C. Aziz ◽  
Shona Murphy

The Herpes Simplex Virus (HSV-1) immediate-early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint of a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells. Our findings indicate that ICP22 interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16, has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.


2021 ◽  
Author(s):  
Nur Firdaus Isa ◽  
Olivier Bensaude ◽  
Nadiah C. Aziz ◽  
Shona Murphy

The Herpes Simplex Virus (HSV-1) immediate early protein ICP22 interacts with cellular proteins to inhibit host cell gene expression and promote viral gene expression. ICP22 inhibits phosphorylation of Ser2 of the RNA polymerase II (pol II) carboxyl-terminal domain (CTD) and productive elongation of pol II. Here we show that ICP22 affects elongation of pol II through both the early-elongation checkpoint and the poly(A)-associated elongation checkpoint on a protein-coding gene model. Coimmunoprecipitation assays using tagged ICP22 expressed in human cells and pulldown assays with recombinant ICP22 in vitro coupled with mass spectrometry identify transcription elongation factors, including P-TEFb, additional CTD kinases and the FACT complex as interacting cellular factors. Using a photoreactive amino acid incorporated into ICP22, we found that L191, Y230 and C225 crosslink to both subunits of the FACT complex in cells.  Our findings indicate that ICP22 physically interacts with critical elongation regulators to inhibit transcription elongation of cellular genes, which may be vital for HSV-1 pathogenesis. We also show that the HSV viral activator, VP16 has a region of structural similarity to the ICP22 region that interacts with elongation factors, suggesting a model where VP16 competes with ICP22 to deliver elongation factors to viral genes.


2011 ◽  
Vol 10 (11) ◽  
pp. 1465-1472 ◽  
Author(s):  
Dilrukshi Ekanayake ◽  
Robert Sabatini

ABSTRACT Very little is understood regarding how transcription is initiated/regulated in the early-diverging eukaryote Trypanosoma cruzi . Unusually for a eukaryote, genes transcribed by RNA polymerase (Pol) II in T. cruzi are arranged in polycistronic transcription units (PTUs). On the basis of this gene organization, it was previously thought that trypanosomes rely solely on posttranscriptional processes to regulate gene expression. We recently localized a novel glucosylated thymine DNA base, called base J, to potential promoter regions of PTUs throughout the trypanosome genome. Loss of base J, following the deletion of JBP1, a thymidine hydroxylase involved with synthesis, led to a global increase in the Pol II transcription rate and gene expression. In order to determine the mechanism by which base J regulates transcription, we have characterized changes in chromatin structure and Pol II recruitment to promoter regions following the loss of base J. The loss of base J coincides with a decrease in nucleosome abundance, increased histone H3/H4 acetylation, and increased Pol II occupancy at promoter regions, including the well-characterized spliced leader RNA gene promoter. These studies present the first direct evidence for epigenetic regulation of Pol II transcription initiation via DNA modification and chromatin structure in kinetoplastids as well as provide a mechanism for regulation of trypanosome gene expression via the novel hypermodified base J.


Sign in / Sign up

Export Citation Format

Share Document