scholarly journals Functional Replacement of the Carboxy-Terminal Two-Thirds of the Influenza A Virus NS1 Protein with Short Heterologous Dimerization Domains

2002 ◽  
Vol 76 (24) ◽  
pp. 12951-12962 ◽  
Author(s):  
Xiuyan Wang ◽  
Christopher F. Basler ◽  
Bryan R. G. Williams ◽  
Robert H. Silverman ◽  
Peter Palese ◽  
...  

ABSTRACT The NS1 protein of influenza A/WSN/33 virus is a 230-amino-acid-long protein which functions as an interferon alpha/beta (IFN-α/β) antagonist by preventing the synthesis of IFN during viral infection. In tissue culture, the IFN inhibitory function of the NS1 protein has been mapped to the RNA binding domain, the first 73 amino acids. Nevertheless, influenza viruses expressing carboxy-terminally truncated NS1 proteins are attenuated in mice. Dimerization of the NS1 protein has previously been shown to be essential for its RNA binding activity. We have explored the ability of heterologous dimerization domains to functionally substitute in vivo for the carboxy-terminal domains of the NS1 protein. Recombinant influenza viruses were generated that expressed truncated NS1 proteins of 126 amino acids, fused to 28 or 24 amino acids derived from the dimerization domains of either the Saccharomyces cerevisiae PUT3 or the Drosophila melanogaster Ncd (DmNcd) proteins. These viruses regained virulence and lethality in mice. Moreover, a recombinant influenza virus expressing only the first 73 amino acids of the NS1 protein was able to replicate in mice lacking three IFN-regulated antiviral enzymes, PKR, RNaseL, and Mx, but not in wild-type (Mx-deficient) mice, suggesting that the attenuation was mainly due to an inability to inhibit the IFN system. Remarkably, a virus with an NS1 truncated at amino acid 73 but fused to the dimerization domain of DmNcd replicated and was also highly pathogenic in wild-type mice. These results suggest that the main biological function of the carboxy-terminal region of the NS1 protein of influenza A virus is the enhancement of its IFN antagonist properties by stabilizing the NS1 dimeric structure.

2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


2003 ◽  
Vol 77 (24) ◽  
pp. 13257-13266 ◽  
Author(s):  
Nicola R. Donelan ◽  
Christopher F. Basler ◽  
Adolfo García-Sastre

ABSTRACT Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-β) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-β production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Antonio M. Lopes ◽  
Patricia Domingues ◽  
Roland Zell ◽  
Benjamin G. Hale

ABSTRACT Rational characterization of virulence and host-adaptive markers in the multifunctional influenza A virus NS1 protein is hindered by a lack of comprehensive knowledge about NS1-host protein protein interfaces. Here, we surveyed the impact of amino acid variation in NS1 at its structurally defined binding site for host p85β, a regulator of phosphoinositide 3-kinase (PI3K) signaling. Structure-guided alanine scanning of all viral residues at this interface defined 10 positions contributing to the interaction, with residues 89, 95, 98, 133, 145, and 162 being the most important. A bioinformatic study of >24,000 publicly available NS1 sequences derived from viruses infecting different hosts highlighted several prevalent amino acid variants at the p85β interface that either enhanced (I95) or weakened (N135, T145, L161, Y161, S164) p85β binding. Interestingly, analysis of viruses circulating in humans since the 1918 pandemic revealed the temporal acquisition of functionally relevant variants at this interface. I95 (which enhanced p85β binding) quickly became prevalent in the 1940s and experimentally conferred a fitness advantage to a recombinant 1930s-based H1N1 virus in human lung epithelial cells. Surprisingly, H1N1 and H3N2 viruses recently acquired T145 or N135, respectively, which diminished p85β binding but apparently not the overall fitness in the human population. Evolutionary analyses revealed covariation of the NS1-p85β binding phenotype in humans with functional changes at multiple residues in other viral proteins, suggesting an unexplored compensatory or synergistic interplay between phenotypes in vivo. Overall, our data provide a resource to understand the consequences of the NS1-p85β binding spectrum of different influenza viruses and highlight the dynamic evolution of this property in viruses circulating in humans. IMPORTANCE In humans, influenza A viruses are responsible for causing seasonal epidemics and occasional pandemics. These viruses also circulate and evolve in other animal species, creating a reservoir from which novel viruses with distinct properties can emerge. The viral nonstructural protein NS1 is an important host range determinant and virulence factor that exhibits strain-specific interactions with several host factors, although few have been characterized extensively. In the study described here, we comprehensively surveyed the impact of natural and unnatural NS1 variations on the binding of NS1 to host p85β, a subunit of phosphoinositide 3-kinase that regulates intracellular metabolism and contributes to virus replication and virulence. We define the p85β-binding site on NS1 and provide a predictive resource to assess this ability of NS1 in viruses from different hosts. Strikingly, we uncover a spectrum of p85β binding by different NS1 proteins and reveal that viruses evolving in humans have undergone dynamic changes in this NS1 function over the last century.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


2012 ◽  
Vol 93 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Nicole C. Robb ◽  
Ervin Fodor

The influenza A virus M1 mRNA is alternatively spliced to produce M2 mRNA, mRNA3, and in some cases, M4 mRNA. Splicing of influenza mRNAs is carried out by the cellular splicing machinery and is thought to be regulated, as both spliced and unspliced mRNAs encode proteins. In this study, we used radioactively labelled primers to investigate the accumulation of spliced and unspliced M segment mRNAs in viral infection and ribonucleoprotein (RNP) reconstitution assays in which only the minimal components required for transcription and replication to occur were expressed. We found that co-expression of the viral NS1 protein in an RNP reconstitution assay altered the accumulation of spliced mRNAs compared with when it was absent, and that this activity was dependent on the RNA-binding ability of NS1. These findings suggest that the NS1 protein plays a role in the regulation of splicing of influenza virus M1 mRNA.


2009 ◽  
Vol 90 (12) ◽  
pp. 2990-2994 ◽  
Author(s):  
Georg Kochs ◽  
Luis Martínez-Sobrido ◽  
Stefan Lienenklaus ◽  
Siegfried Weiss ◽  
Adolfo García-Sastre ◽  
...  

Influenza viruses lacking the interferon (IFN)-antagonistic non-structural NS1 protein are strongly attenuated. Here, we show that mutants of a highly virulent variant of A/PR/8/34 (H1N1) carrying either a complete deletion or C-terminal truncations of NS1 were far more potent inducers of IFN in infected mice than NS1 mutants derived from standard A/PR/8/34. Efficient induction of IFN correlated with successful initial virus replication in mouse lungs, indicating that the IFN response is boosted by enhanced viral activity. As the new NS1 mutants can be handled in standard biosafety laboratories, they represent convenient novel tools for studying virus-induced IFN expression in vivo.


2007 ◽  
Vol 81 (23) ◽  
pp. 12730-12739 ◽  
Author(s):  
Yeun-Kyung Shin ◽  
Yang Li ◽  
Qiang Liu ◽  
Deborah H. Anderson ◽  
Lorne A. Babiuk ◽  
...  

ABSTRACT Recent studies have demonstrated that influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by binding of influenza NS1 protein to the p85 regulatory subunit of PI3K. Our previous study proposed that two polyproline motifs in NS1 (amino acids 164 to 167 [PXXP], SH3 binding motif 1, and amino acids 213 to 216 [PPXXP], SH3 binding motif 2) may mediate binding to the p85 subunit of PI3K. Here we performed individual mutational analyses on these two motifs and demonstrated that SH3 binding motif 1 contributes to the interactions of NS1 with p85β, whereas SH3 binding motif 2 is not required for this process. Mutant viruses carrying NS1 with mutations in SH3 binding motif 1 failed to interact with p85β and induce the subsequent activation of PI3K/Akt pathway. Mutant virus bearing mutations in SH3 binding motif 2 exhibited similar phenotype as the wild-type (WT) virus. Furthermore, viruses with mutations in SH3 binding motif 1 induced more severe apoptosis than did the WT virus. Our data suggest that SH3 binding motif 1 in NS1 protein is required for NS1-p85β interaction and PI3K/Akt activation. Activation of PI3K/Akt pathway is beneficial for virus replication by inhibiting virus induced apoptosis through phosphorylation of caspase-9.


2010 ◽  
Vol 84 (19) ◽  
pp. 10051-10062 ◽  
Author(s):  
Chi-Jene Chen ◽  
Guang-Wu Chen ◽  
Ching-Ho Wang ◽  
Chih-Heng Huang ◽  
Yeau-Ching Wang ◽  
...  

ABSTRACT PB1-F2 is a viral protein that is encoded by the PB1 gene of influenza A virus by alternative translation. It varies in length and sequence context among different strains. The present study examines the functions of PB1-F2 proteins derived from various human and avian viruses. While H1N1 PB1-F2 was found to target mitochondria and enhance apoptosis, H5N1 PB1-F2, surprisingly, did not localize specifically to mitochondria and displayed no ability to enhance apoptosis. Introducing Leu into positions 69 (Q69L) and 75 (H75L) in the C terminus of H5N1 PB1-F2 drove 40.7% of the protein to localize to mitochondria compared with the level of mitochondrial localization of wild-type H5N1 PB1-F2, suggesting that a Leu-rich sequence in the C terminus is important for targeting of mitochondria. However, H5N1 PB1-F2 contributes to viral RNP activity, which is responsible for viral RNA replication. Lastly, although the swine-origin influenza virus (S-OIV) contained a truncated form of PB1-F2 (12 amino acids [aa]), potential mutation in the future may enable it to contain a full-length product. Therefore, the functions of this putative S-OIV PB1-F2 (87 aa) were also investigated. Although this PB1-F2 from the mutated S-OIV shares only 54% amino acid sequence identity with that of seasonal H1N1 virus, it also increased viral RNP activity. The plaque size and growth curve of the viruses with and without S-OIV PB1-F2 differed greatly. The PB1-F2 protein has various lengths, amino acid sequences, cellular localizations, and functions in different strains, which result in strain-specific pathogenicity. Such genetic and functional diversities make it flexible and adaptable in maintaining the optimal replication efficiency and virulence for various strains of influenza A virus.


2000 ◽  
Vol 74 (24) ◽  
pp. 11566-11573 ◽  
Author(s):  
Xiuyan Wang ◽  
Ming Li ◽  
Hongyong Zheng ◽  
Thomas Muster ◽  
Peter Palese ◽  
...  

ABSTRACT The alpha/beta interferon (IFN-α/β) system represents one of the first lines of defense against virus infections. As a result, most viruses encode IFN antagonistic factors which enhance viral replication in their hosts. We have previously shown that a recombinant influenza A virus lacking the NS1 gene (delNS1) only replicates efficiently in IFN-α/β-deficient systems. Consistent with this observation, we found that infection of tissue culture cells with delNS1 virus, but not with wild-type influenza A virus, induced high levels of mRNA synthesis from IFN-α/β genes, including IFN-β. It is known that transactivation of the IFN-β promoter depends on NF-κB and several other transcription factors. Interestingly, cells infected with delNS1 virus showed high levels of NF-κB activation compared with those infected with wild-type virus. Expression of dominant-negative inhibitors of the NF-κB pathway during delNS1 virus infection prevented the transactivation of the IFN-β promoter, demonstrating a functional link between NF-κB activation and IFN-α/β synthesis in delNS1 virus-infected cells. Moreover, expression of the NS1 protein prevented virus- and/or double-stranded RNA (dsRNA)-mediated activation of the NF-κB pathway and of IFN-β synthesis. This inhibitory property of the NS1 protein of influenza A virus was dependent on its ability to bind dsRNA, supporting a model in which binding of NS1 to dsRNA generated during influenza virus infection prevents the activation of the IFN system. NS1-mediated inhibition of the NF-κB pathway may thus play a key role in the pathogenesis of influenza A virus.


1989 ◽  
Vol 9 (7) ◽  
pp. 2989-2999 ◽  
Author(s):  
H M Traglia ◽  
N S Atkinson ◽  
A K Hopper

The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability.


Sign in / Sign up

Export Citation Format

Share Document