scholarly journals HIV-1 Gag recruits oligomeric Vpr via two binding sites in p6, but both mature p6 and Vpr are rapidly lost upon target cell entry

2021 ◽  
Author(s):  
Madushi Wanaguru ◽  
Kate N. Bishop

The p12 region of MLV Gag and the p6 region of HIV-1 Gag contain late-domains required for virus budding. Additionally, the accessory protein Vpr is recruited into HIV particles via p6. Mature p12 is essential for early viral replication events, but the role of mature p6 in early replication is unknown. Using a proviral vector in which the gag and pol reading frames are uncoupled, we have performed the first alanine-scanning mutagenesis screens across p6, to probe its importance for early HIV-1 replication and to further understand its interaction with Vpr. The infectivity of our mutants suggests that, unlike p12, p6 is not important for early viral replication. Consistent with this, we observed that p6 is rapidly lost upon target cell entry in time-course immunoblotting experiments. By analysing Vpr incorporation in p6 mutant virions, we identified that the 15-FRFG-18 and 41-LXXLF-45 motifs previously identified as putative Vpr-binding sites are important for Vpr recruitment, but that the 34-ELY-36 motif also suggested to be a Vpr-binding site is dispensable. Additionally, disrupting Vpr oligomerization together with removing either binding motif in p6 reduced Vpr incorporation ∼25-50-fold more than inhibiting Vpr oligomerization alone and ∼10-25-fold more than deletion of each p6 motif alone, implying that multivalency/avidity is important for the interaction. Interestingly, using immunoblotting and immunofluorescence, we observed that most of Vpr is lost concomitantly with p6 during infection, but that a small fraction remains associated with the viral capsid for several hours. This has implications for the function of Vpr in early replication. Importance The p12 protein of MLV and the p6 protein of HIV-1 are both supplementary Gag cleavage products that carry proline-rich motifs which facilitate virus budding. Importantly, p12 has also been found to be essential for early viral replication events. However, whilst Vpr, the only accessory protein packaged into HIV-1 virions, is recruited via the p6 region of Gag, the function of both mature p6 and Vpr in early replication is unclear. Here, we have systematically mutated the p6 region of gag and have studied the effects on HIV infectivity and Vpr packaging. We have also investigated what happens to p6 and Vpr during early infection. We show that, unlike p12, mature p6 is not required for early replication and that most of the mature p6, and the Vpr that it recruits, are lost rapidly upon target cell entry. This has implications for the role of Vpr in target cells.

Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 620 ◽  
Author(s):  
David Bejarano ◽  
Maria Puertas ◽  
Kathleen Börner ◽  
Javier Martinez-Picado ◽  
Barbara Müller ◽  
...  

Macrophages are natural target cells of human immunodeficiency virus type 1 (HIV-1). Viral replication appears to be delayed in these cells compared to lymphocytes; however, little is known about the kinetics of early post-entry events. Time-of-addition experiments using several HIV-1 inhibitors and the detection of reverse transcriptase (RT) products with droplet digital PCR (ddPCR) revealed that early replication was delayed in primary human monocyte-derived macrophages of several donors and peaked late after infection. Direct imaging of reverse-transcription and pre-integration complexes (RTC/PIC) by click-labeling of newly synthesized DNA further confirmed our findings and showed a concomitant shift to the nuclear stage over time. Altering the entry pathway enhanced infectivity but did not affect kinetics of viral replication. The addition of viral protein X (Vpx) enhanced productive infection and accelerated completion of reverse transcription and nuclear entry. We propose that sterile alpha motif (SAM) and histidine/aspartate (HD) domain-containing protein 1 (SAMHD1) activity lowering deoxyribonucleotide triphosphate (dNTP) pools is the principal factor delaying early HIV-1 replication in macrophages.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Joseph M. Gibbons ◽  
Kelly M. Marno ◽  
Rebecca Pike ◽  
Wing-yiu Jason Lee ◽  
Christopher E. Jones ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and, to a lesser extent, cycling T cells. Virion-packaged Vpr is released in target cells shortly after entry, suggesting it is required in the early phase of infection. Previously, we described REAF (RNA-associated early-stage antiviral factor; RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without an intact vpr gene is more highly restricted by REAF and, using delivery by virus-like particles (VLPs), that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells, and we detected, by coimmunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts quickly during the early phase of replication and induces the degradation of REAF within 30 min of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localization and interaction with cullin 4A-DBB1 (DCAF1) E3 ubiquitin ligase are required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, that impedes HIV infection in macrophages. IMPORTANCE For at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1 in vivo. A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages or to explain why Vpr is carried in the virus particle. Here, we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one that inhibits virus replication during reverse transcription. REAF is degraded by Vpr within 30 min of virus entry in a manner dependent on the nuclear localization of Vpr and its interaction with the cell’s protein degradation machinery.


2018 ◽  
Author(s):  
Joseph M Gibbons ◽  
Kelly M Marno ◽  
Rebecca Pike ◽  
Wing-yiu Jason Lee ◽  
Christopher E Jones ◽  
...  

AbstractThe Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and in cycling T cells to a lesser extent. Virion packaged Vpr is released in target cells shortly after entry, suggesting its requirement in the early phase of infection. Previously, we described REAF (RNA-associated Early-stage Antiviral Factor, RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without intactvpris more highly restricted by REAF and, using delivery by VLPs, that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells and we detect, by co-immunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts very quickly during the early phase of replication and induces the degradation of REAF within 30 minutes of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localisation and interaction with cullin4A-DBB1 (DCAF1) E3 ubiquitin ligase is required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, which impedes HIV infection in macrophages.ImportanceFor at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1in vivo. A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages, or to explain why Vpr is carried in the virus particle. Here we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one which inhibits virus replication early during reverse transcription. REAF is degraded by Vpr within 30 minutes of virus entry, in a manner dependent on the nuclear localization of Vpr and its interaction with the cell’s protein degradation machinery.


2015 ◽  
Vol 89 (23) ◽  
pp. 12118-12130 ◽  
Author(s):  
Ferdinand Roesch ◽  
Léa Richard ◽  
Réjane Rua ◽  
Françoise Porrot ◽  
Nicoletta Casartelli ◽  
...  

ABSTRACTThe HIV-1 accessory protein Vpr displays different activities potentially impacting viral replication, including the arrest of the cell cycle in the G2phase and the stimulation of apoptosis and DNA damage response pathways. Vpr also modulates cytokine production by infected cells, but this property remains partly characterized. Here, we investigated the effect of Vpr on the production of the proinflammatory cytokine tumor necrosis factor (TNF). We report that Vpr significantly increases TNF secretion by infected lymphocytes.De novoproduction of Vpr is required for this effect. Vpr mutants known to be defective for G2cell cycle arrest induce lower levels of TNF secretion, suggesting a link between these two functions. Silencing experiments and the use of chemical inhibitors further implicated the cellular proteins DDB1 and TAK1 in this activity of Vpr. TNF secreted by HIV-1-infected cells triggers NF-κB activity in bystander cells and allows viral reactivation in a model of latently infected cells. Thus, the stimulation of the proinflammatory pathway by Vpr may impact HIV-1 replicationin vivo.IMPORTANCEThe role of the HIV-1 accessory protein Vpr remains only partially characterized. This protein is important for viral pathogenesis in infected individuals but is dispensable for viral replication in most cell culture systems. Some of the functions described for Vpr remain controversial. In particular, it remains unclear whether Vpr promotes or instead prevents proinflammatory and antiviral immune responses. In this report, we show that Vpr promotes the release of TNF, a proinflammatory cytokine associated with rapid disease progression. Using Vpr mutants or inhibiting selected cellular genes, we show that the cellular proteins DDB1 and TAK1 are involved in the release of TNF by HIV-infected cells. This report provides novel insights into how Vpr manipulates TNF production and helps clarify the role of Vpr in innate immune responses and inflammation.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Alice A. Duchon ◽  
Corine St. Gelais ◽  
Nathan Titkemeier ◽  
Joshua Hatterschide ◽  
Li Wu ◽  
...  

ABSTRACT A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNALys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNALys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication. IMPORTANCE Human tRNALys3, the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNALys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNALys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNALys. Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Romain Appourchaux ◽  
Mathilde Delpeuch ◽  
Li Zhong ◽  
Julien Burlaud-Gaillard ◽  
Kevin Tartour ◽  
...  

ABSTRACT The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection. The results that we have obtained exclude a role for cholesterol and indicate that CD63 accumulation does not directly relate to an antiviral behavior. We have defined regions that modulate the two antiviral properties of IFITM3 as well as novel domains that modulate protein stability and that, in so doing, influence the extent of its packaging into virions. The results that we have obtained, however, indicate that, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for negative imprinting. Finally, while most mutations concomitantly affect target cell protection and negative imprinting, a region in the C-terminal domain (CTD) exhibits a differential behavior, potentially highlighting the regulatory role that this domain may play in the two antiviral activities of IFITM3. IMPORTANCE IFITM proteins have been associated with the sequestration of incoming virions in endosomes (target cell protection) and with the production of virion particles that incorporate IFITMs and exhibit decreased infectivity (negative imprinting of virion infectivity). How the latter is regulated and whether these two antiviral properties are related remain unknown. By examining the behavior of a large panel of IFITM3 mutants against HIV-1, we determined that IFITM3 mutants are essentially packaged into virions proportionally to their intracellular levels of expression. However, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for the antiviral effects. Most mutations were found to concomitantly affect both antiviral properties of IFITM3, but one CTD mutant exhibited a divergent behavior, possibly highlighting a novel regulatory role for this domain. These findings thus advance our comprehension of how this class of broad antiviral restriction factors acts.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1005 ◽  
Author(s):  
Jennifer L. Elliott ◽  
Sebla B. Kutluay

The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.


2000 ◽  
Vol 352 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Bouchaib BAHBOUHI ◽  
Mourad BENDJENNAT ◽  
Denise GUÉTARD ◽  
Nabil Georges SEIDAH ◽  
Elmostafa BAHRAOUI

The present work investigated the potential role of alpha-1 antitrypsin Portland variant (α1-PDX), a bioengineered serine proteinase inhibitor (serpin), in the interference with the viral replication of HIV-1, induction of syncytia and maturation of envelope glycoprotein gp160 to gp120 and gp41. A Jurkat lymphoid cell line transfected with a plasmid containing the α1-PDX cDNA (J-PDX) and expressing the protein in a stable manner was infected with HIV-1Lai. Controls were Jurkat cells transfected with the same vector pcDNA3 without the cDNA insert (J-pcDNA3). The results showed that viral replication of HIV-1 was significantly inhibited with a delay in replication kinetics in J-PDX cells as compared with J-pcDNA3 cells. In addition, a comparison of the infectious capacity of viruses produced in the presence and absence of α1-PDX revealed that this capacity differed. It was found that α1-PDX exerts its effect by interfering with the formation of syncytia between J-PDX cells infected with gp160 recombinant vaccinia virus, or after infection by HIV-1 and co-culture with uninfected Molt-4 cells. In contrast, when the same experiments were performed with J-pcDNA3 cells, a large number of syncytia was obtained. Analysis of viral proteins by Western blotting and densitometry showed that the inhibition of the cytopathic effect of HIV-1 and viral replication was correlated with the capacity of α1-PDX to interfere with the maturation of gp160 to gp120 and gp41.


2020 ◽  
Vol 94 (15) ◽  
Author(s):  
S. Mediouni ◽  
J. A. Jablonski ◽  
S. Tsuda ◽  
A. Barsamian ◽  
C. Kessing ◽  
...  

ABSTRACT Oregano essential oil has long been known for its health-promoting benefits. Here, we report its activity against viral replication. Oregano oil was found to specifically inhibit lentiviruses, such as human and simian immunodeficiency viruses (HIV and SIV), irrespective of virus tropism, but not hepatitis C virus, adenovirus 5 (ADV5), Zika virus, and influenza (H1N1) virus. Oregano oil’s most abundant components, carvacrol and its isomer, thymol, were shown to block virus-target cell fusion while not perturbing other stages of the virus life cycle. We detected changes in virus particle density, suggesting that cholesterol depletion from the HIV-1 envelope membrane reduces virus entry. Furthermore, infection was rescued by adding exogenous cholesterol. The evolution of viral resistance to carvacrol supported this mechanism of action with the identification of mutations in the viral gp41 fusion protein that counteracted cholesterol depletion. In addition, resistance to carvacrol emerged later than typically observed for other clinically used drugs, strengthening its antiviral potential. Structure-activity relationship studies revealed key motifs of carvacrol and thymol required for HIV neutralization and identified previously unknown active analogs. Carvacrol was also shown to additively cooperate with antiretroviral therapy. In sum, oregano oil and improved carvacrol and thymol analogs could be considered to supplement current HIV therapeutics. IMPORTANCE Oregano essential oil has multiple benefits in traditional medicine, cosmetics, and food industries. Carvacrol and its analog, thymol, are well-described components of oregano oil. Here, we show that these compounds inhibit HIV-target cell fusion independently of viral tropism. Our results suggest that carvacrol and thymol alter the cholesterol content of the viral membrane, blocking HIV-1 entry into the target cell. Resistance to carvacrol has selected for viruses with mutations in the viral envelope glycoprotein, gp41. This protein is known for its interaction with cholesterol present in membrane lipid rafts. Together, these results demonstrate the potential of therapies targeting the viral envelope membrane, and oregano oil is a safe supplement to antiretrovirals, potentially delaying disease progression and resistance development.


Sign in / Sign up

Export Citation Format

Share Document