scholarly journals Identification of Common Deletions in the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2

2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Zhe Liu ◽  
Huanying Zheng ◽  
Huifang Lin ◽  
Mingyue Li ◽  
Runyu Yuan ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus first identified in December 2019. Notable features that make SARS-CoV-2 distinct from most other previously identified betacoronaviruses include a receptor binding domain and a unique insertion of 12 nucleotides or 4 amino acids (PRRA) at the S1/S2 boundary. In this study, we identified two deletion variants of SARS-CoV-2 that either directly affect the polybasic cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN). These deletions were verified by multiple sequencing methods. In vitro results showed that the deletion of NSPRRAR likely does not affect virus replication in Vero and Vero-E6 cells; however, the deletion of QTQTN may restrict late-phase viral replication. The deletion of QTQTN was detected in 3 of 68 clinical samples and 12 of 24 in vitro-isolated viruses, while the deletion of NSPRRAR was identified in 3 in vitro-isolated viruses. Our data indicate that (i) there may be distinct selection pressures on SARS-CoV-2 replication or infection in vitro and in vivo; (ii) an efficient mechanism for deleting this region from the viral genome may exist, given that the deletion variant is commonly detected after two rounds of cell passage; and (iii) the PRRA insertion, which is unique to SARS-CoV-2, is not fixed during virus replication in vitro. These findings provide information to aid further investigation of SARS-CoV-2 infection mechanisms and a better understanding of the NSPRRAR deletion variant observed here. IMPORTANCE The spike protein determines the infectivity and host range of coronaviruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has two unique features in its spike protein, the receptor binding domain and an insertion of 12 nucleotides at the S1/S2 boundary resulting in a furin-like cleavage site. Here, we identified two deletion variants of SARS-CoV-2 that either directly affect the furin-like cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN), and we investigated these deletions in cell isolates and clinical samples. The absence of the polybasic cleavage site in SARS-CoV-2 did not affect virus replication in Vero or Vero-E6 cells. Our data indicate the PRRAR sequence and the flanking QTQTN sequence are not fixed in vitro; thus, there appears to be distinct selection pressures on SARS-CoV-2 sequences in vitro and in vivo. Further investigation of the mechanism of generating these deletion variants and their infectivity in different animal models would improve our understanding of the origin and evolution of this virus.

Author(s):  
Zhe Liu ◽  
Huanying Zheng ◽  
Runyu Yuan ◽  
Mingyue Li ◽  
Huifang Lin ◽  
...  

AbstractTwo notable features have been identified in the SARS-CoV-2 genome: (1) the receptor binding domain of SARS-CoV-2; (2) a unique insertion of twelve nucleotide or four amino acids (PRRA) at the S1 and S2 boundary. For the first feature, the similar RBD identified in SARs-like virus from pangolin suggests the RBD in SARS-CoV-2 may already exist in animal host(s) before it transmitted into human. The left puzzle is the history and function of the insertion at S1/S2 boundary, which is uniquely identified in SARS-CoV-2. In this study, we identified two variants from the first Guangdong SARS-CoV-2 cell strain, with deletion mutations on polybasic cleavage site (PRRAR) and its flank sites. More extensive screening indicates the deletion at the flank sites of PRRAR could be detected in 3 of 68 clinical samples and half of 22 in vitro isolated viral strains. These data indicate (1) the deletion of QTQTN, at the flank of polybasic cleavage site, is likely benefit the SARS-CoV-2 replication or infection in vitro but under strong purification selection in vivo since it is rarely identified in clinical samples; (2) there could be a very efficient mechanism for deleting this region from viral genome as the variants losing 23585-23599 is commonly detected after two rounds of cell passage. The mechanistic explanation for this in vitro adaptation and in vivo purification processes (or reverse) that led to such genomic changes in SARS-CoV-2 requires further work. Nonetheless, this study has provided valuable clues to aid further investigation of spike protein function and virus evolution. The deletion mutation identified in vitro isolation should be also noted for current vaccine development.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2021 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Wen-Hsin Lee ◽  
Sandhya Bangaru ◽  
Andrew B Ward ◽  
...  

After first emerging in December 2019 in China, severe acute respiratory syndrome 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized but supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the whole spike of SARS-CoV-2. In this study, we have generated mouse monoclonal antibodies (mAbs) against different epitopes on the RBD and assessed binding and neutralization against authentic SARS-CoV-2. We have demonstrated that antibodies with neutralizing activity, but not non-neutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the mAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variants in vitro.


2021 ◽  
Author(s):  
Isabella Ferreira ◽  
Rawlings Datir ◽  
Guido Papa ◽  
Steven Kemp ◽  
Bo Meng ◽  
...  

The B.1.617 variant emerged in the Indian state of Maharashtra in late 2020 and has spread throughout India and to at least 40 countries. There have been fears that two key mutations seen in the receptor binding domain L452R and E484Q would have additive effects on evasion of neutralising antibodies. Here we delineate the phylogenetics of B.1.617 and spike mutation frequencies, in the context of others bearing L452R. The defining mutations in B.1.617.1 spike are L452R and E484Q in the RBD that interacts with ACE2 and is the target of neutralising antibodies. All B.1.617 viruses have the P681R mutation in the polybasic cleavage site region in spike. We report that B.1.617.1 spike bearing L452R, E484Q and P681R mediates entry into cells with slightly reduced efficiency compared to Wuhan-1. This spike confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies that is similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. Furthermore we show that the P681R mutation significantly augments syncytium formation upon the B.1.617.1 spike protein, potentially contributing to increased pathogenesis observed in hamsters and infection growth rates observed in humans.


2021 ◽  
Author(s):  
Guofang Zhang ◽  
Yalin Cong ◽  
Guoli Cao ◽  
Liang Li ◽  
Peng Yu ◽  
...  

The global emergency caused by the SARS-CoV-2 pandemics can only be solved with adequate preventive and therapeutic strategies, both currently missing. The electropositive Receptor Binding Domain (RBD) of SARS-CoV-2 spike protein with abundant β-sheet structure serves as target for COVID-19 therapeutic drug design. Here, we discovered that ultrathin 2D CuInP2S6 (CIPS) nanosheets as a new agent against SARS-CoV-2 infection, which also able to promote viral host elimination. CIPS exhibits extremely high and selective binding capacity with the RBD of SARS-CoV-2 spike protein, with consequent inhibition of virus entry and infection in ACE2-bearing cells and human airway epithelial organoids. CIPS displays nano-viscous properties in selectively binding with spike protein (KD < 1 pM) with negligible toxicity in vitro and in vivo. Further, the CIPS-bound SARS-CoV-2 was quickly phagocytosed and eliminated by macrophages, suggesting CIPS could be successfully used to capture and facilitate the virus host elimination with possibility of triggering anti-viral immunization. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, as well as for use as disinfection agent and surface coating material to constrain the SARS-CoV-2 spreading.


mBio ◽  
2021 ◽  
Author(s):  
Wen Su ◽  
Sin Fun Sia ◽  
Aaron J. Schmitz ◽  
Traci L. Bricker ◽  
Tyler N. Starr ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main target for neutralizing antibodies. These antibodies can be elicited through immunization or passively transferred as therapeutics in the form of convalescent-phase sera or monoclonal antibodies (MAbs).


2022 ◽  
Author(s):  
Tom Z Yuan ◽  
Carolina Lucas ◽  
Valter S Monteiro ◽  
Akiko Iwasaki ◽  
Marisa L Yang ◽  
...  

Bispecific antibodies have emerged as a promising strategy for curtailing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape. This brief report highlights RBT-0813 (also known as TB493-04), a synthetic, humanized, receptor-binding domain (RBD)-targeted bispecific antibody that retains picomolar affinity to the Spike (S) trimers of all major variants of concern and neutralizes both SARS-CoV-2 Delta and Omicron in vitro.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009857
Author(s):  
Michelle N. Vu ◽  
Vineet D. Menachery

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged as a virus with a pathogenicity closer to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and a transmissibility similar to common cold coronaviruses (CoVs). In this review, we briefly discuss the features of the receptor-binding domain (RBD) and protease cleavage of the SARS-CoV-2 spike protein that enable SARS-CoV-2 to be a pandemic virus.


Author(s):  
Shane Miersch ◽  
Mart Ustav ◽  
Zhijie Li ◽  
James B. Case ◽  
Safder Ganaie ◽  
...  

ABSTRACTCoronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds. Three highly pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome CoV (MERS), Severe Acute Respiratory Syndrome CoV (SARS), and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. Here, we describe a panel of synthetic monoclonal antibodies, built on a human IgG framework, that bind to the spike protein of SARS-CoV-2 (the causative agent of COVID-19), compete for ACE2 binding, and potently inhibit SARS-CoV-2. All antibodies that exhibited neutralization potencies at sub-nanomolar concentrations against SARS-CoV-2/USA/WA1 in Vero E6 cells, also bound to the receptor binding domain (RBD), suggesting competition for the host receptor ACE2. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document