scholarly journals Identification of Influenza A Virus PB2 Residues Involved in Enhanced Polymerase Activity and Virus Growth in Mammalian Cells at Low Temperatures

2015 ◽  
Vol 89 (15) ◽  
pp. 8042-8049 ◽  
Author(s):  
Tsuyoshi Hayashi ◽  
Saintedym Wills ◽  
Kendra A. Bussey ◽  
Toru Takimoto

ABSTRACTMutations in the polymerase genes are known to play a major role in avian influenza virus adaptation to mammalian hosts. Despite having avian origin PA and PB2, the 2009 pandemic H1N1 virus (pH1N1) can replicate well in mammalian respiratory tracts, suggesting that these proteins have acquired mutations for efficient growth in humans. We have previously shown that PA from the pH1N1 virus A/California/04/09 (Cal) strongly enhances activity of an otherwise avian polymerase complex derived from A/chicken/Nanchang/3-120/01 (Nan) in mammalian cells. However, this enhancement was observed at 37°C but not at the lower temperature of 34°C. An additional introduction of Cal PB2 enhanced activity at 34°C, suggesting the presence of unidentified residues in Cal PB2 that are required for efficient growth at low temperature. Here, we sought to determine the key PB2 residues which confer enhanced polymerase activity and virus growth in human cells at low temperature. Using a reporter gene assay, we identified novel mutations, PB2 V661A and V683T/A684S, which are involved in enhanced Cal polymerase activity at low temperature. The PB2 T271A mutation, which we previously reported, also contributed to enhanced activity. The growth of recombinant Cal containing PB2 with Nan residues 271T/661V/683V/684A was strongly reduced in human cells compared to wild-type virus at low temperature. Among the four residues, 271A and 684S are conserved in human and pH1N1 viruses but not in avian viruses, suggesting an important role in mammalian adaptation of pH1N1 virus.IMPORTANCEThe PB2 protein plays a key role in the host adaptation, cold sensitivity, and pathogenesis of influenza A virus. Despite containing an avian origin PB2 lacking the mammalian adaptive mutations 627K or 701N, pH1N1 influenza virus strains can replicate efficiently in the low temperature upper respiratory tract of mammals, suggesting the presence of unknown mutations in the pH1N1 PB2 protein responsible for its low temperature adaptation. Here, in addition to PB2 271A, which has been shown to increase polymerase activity, we identified novel PB2 residues 661A and 683T/684S in pH1N1 which confer enhanced polymerase activity and virus growth in mammalian cells especially at low temperature. Our findings suggest that the presence of these PB2 residues contributes to efficient replication of the pH1N1 virus in the upper respiratory tract, which resulted in efficient human-to-human transmission of this virus.




2018 ◽  
Author(s):  
Drishti Kaul ◽  
Raveen Rathnasinghe ◽  
Marcela Ferres ◽  
Gene S. Tan ◽  
Aldo Barrera ◽  
...  

AbstractInfection with influenza can be aggravated by bacterial co-infections, which often results in disease exacerbation because of host responses and cellular damage. The native upper respiratory tract (URT) microbiome likely plays a role, yet the effects of influenza infection on the URT microbiome are largely unknown. We performed a longitudinal study to assess the temporal dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and ferrets. Uninfected human patients and ferret URT microbiomes had stable “heathy ecostate” communities both within and between individuals. In contrast, infected patients and ferrets exhibited large changes in bacterial community composition over time and between individuals. The “unhealthy” ecostates of infected individuals progressed towards the “healthy ecostate” over time, coinciding with viral clearance and recovery. Blooms of Pseudomonas were a statistically associated constant in the disturbed microbiomes of infected individuals. The dynamic and resilient nature of the microbiome during influenza virus infection in multiple hosts provides a compelling rationale for the maintenance of the microbiome homeostasis as a potential therapeutic target to prevent IAV associated bacterial co-infections.One Sentence SummaryDynamics of the upper respiratory tract microbiome during influenza A virus infection



2020 ◽  
Author(s):  
Karina Mueller Brown ◽  
Valerie Le Sage ◽  
Andrea J. French ◽  
Jennifer E. Jones ◽  
Gabriella H. Padovani ◽  
...  

AbstractSecondary bacterial infection, especially with Streptococcus pneumoniae (Spn), is a common complication in fatal and ICU cases of influenza virus infection. During the H1N1 pandemic of 2009 (H1N1pdm09), there was higher mortality in healthy young adults due to secondary bacterial pneumonia, with Spn being the most frequent bacterial species. Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, we used the ferret model to study whether airborne transmission of H1N1pdm09 was influenced by coinfection with two Spn serotypes: type 2 (D39) and type 19F (BHN97). We found that coinfected animals experienced more severe clinical symptoms as well as increased bacterial colonization of the upper respiratory tract. In contrast, we observed that coinfection resulted in reduced airborne transmission of influenza virus. Only 1/3 animals coinfected with D39 transmitted H1N1pdm09 virus to a naïve recipient compared to 3/3 transmission efficiency in animals infected with influenza virus alone. A similar trend was seen in coinfection with BHN97, suggesting that coinfection with Spn reduces influenza virus airborne transmission. The decrease in transmission does not appear to be caused by decreased stability of H1N1pdm09 in expelled droplets in the presence of Spn. Rather, coinfection resulted in decreased viral shedding in the ferret upper respiratory tract. Thus, we conclude that coinfection enhances colonization and airborne transmission of Spn but decreases replication and transmission of H1N1pdm09. Our data points to an asymmetrical relationship between these two pathogens rather than a synergistic one.SignificanceAirborne transmission of respiratory viruses is influenced by many host and environmental parameters. The complex interplay between bacterial and viral coinfections on transmission of respiratory viruses has been understudied. We demonstrate that coinfection with Streptococcus pneumoniae reduces airborne transmission of influenza A viruses by decreasing viral titers in the upper respiratory tract. Instead of implicating a synergistic relationship between bacteria and virus, our work demonstrates an asymmetric relationship where bacteria benefit from the virus but where the fitness of influenza A viruses is negatively impacted by coinfection. The implications of exploring how microbial communities can influence the fitness of pathogenic organisms is a novel avenue for transmission control of pandemic respiratory viruses.



2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Karen Ivinson ◽  
Georgia Deliyannis ◽  
Leanne McNabb ◽  
Lara Grollo ◽  
Brad Gilbertson ◽  
...  

ABSTRACT It is possible to model the progression of influenza virus from the upper respiratory tract to the lower respiratory tract in the mouse using viral inoculum delivered in a restricted manner to the nose. In this model, infection with the A/Udorn/307/72 (Udorn) strain of virus results ultimately in high viral titers in both the trachea and lungs. In contrast, the A/Puerto Rico/8/34 (PR8) strain causes an infection that is almost entirely limited to the nasal passages. The factors that govern the progression of virus down the respiratory tract are not well understood. Here, we show that, while PR8 virus grows to high titers in the nose, an inhibitor present in the saliva blocks further progression of infection to the trachea and lungs and renders an otherwise lethal dose of virus completely asymptomatic. In vitro, the salivary inhibitor was capable of potent neutralization of PR8 virus and an additional 20 strains of type A virus and two type B strains that were tested. The exceptions were Udorn virus and the closely related H3N2 strains A/Port Chalmers/1/73 and A/Victoria/3/75. Characterization of the salivary inhibitor showed it to be independent of sialic acid and other carbohydrates for its function. This and other biochemical properties, together with its virus strain specificity and in vivo function, indicate that the mouse salivary inhibitor is a previously undescribed innate inhibitory molecule that may have evolved to provide pulmonary protection of the species from fatal influenza virus infection. IMPORTANCE Influenza A virus occasionally jumps from aquatic birds, its natural host, into mammals to cause outbreaks of varying severity, including pandemics in humans. Despite the laboratory mouse being used as a model to study influenza virus pathogenesis, natural outbreaks of influenza have not been reported in the species. Here, we shed light on one mechanism that might allow mice to be protected from influenza in the wild. We show that virus deposited in the mouse upper respiratory tract will not progress to the lower respiratory tract due to the presence of a potent inhibitor of the virus in saliva. Containing inhibitor-sensitive virus to the upper respiratory tract renders an otherwise lethal infection subclinical. This knowledge sheds light on how natural inhibitors may have evolved to improve survival in this species.



1988 ◽  
Vol 101 (3) ◽  
pp. 611-621 ◽  
Author(s):  
G. A Tannock ◽  
S. M Gillett ◽  
R. S Gillett ◽  
R. D Barry ◽  
M. J Hensley ◽  
...  

SUMMARYThe efficacy of interferon A (rIFN-α2A), an Escherichia coli-derived interferon, in the prophylaxis of acute upper respiratory tract infection, was evaluated in a community-based double-blind placebo-controlled study in the Australian winter of 1985. The trial population of 412 healthy volunteers (190 males and 222 females, aged 18–65 years) self-administered 1·5, 3·0 and 6·0 megaunits (MU) of interferon A per day or a placebo, intranasally for 28 days.The period of study coincided with an outbreak of H3N2 influenza A (detected in 35 of the 107 acute specimens) as well as substantial numbers of respiratory syncytial virus and adenovirus infections. Rhinoviruses were isolated from only three specimens. In many cases, subjects had laboratory and clinical evidence of having had more than one respiratory tract infection during the period of the study. Viruses were detected in 54 or 107 acute specimens (49%).No statistically significant differences were noted between the various treatment groups in the incidence of laboratory-proven viral infection (virus isolation and/or antibody response). Analysis of reported symptoms indicated that blood-tinged mucus and nasal stuffiness occurred more frequently with higher doses of interferon. There appeared to be no clinical benefit from the use of interferon A in the amelioration of symptoms.



mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tonia Zangari ◽  
Mila B. Ortigoza ◽  
Kristen L. Lokken-Toyli ◽  
Jeffrey N. Weiser

ABSTRACT The dynamics underlying respiratory contagion (the transmission of infectious agents from the airways) are poorly understood. We investigated host factors involved in the transmission of the leading respiratory pathogen Streptococcus pneumoniae. Using an infant mouse model, we examined whether S. pneumoniae triggers inflammatory pathways shared by influenza A virus (IAV) to promote nasal secretions and shedding from the upper respiratory tract to facilitate transit to new hosts. Here, we show that amplification of the type I interferon (IFN-I) response is a critical host factor in this process, as shedding and transmission by both IAV and S. pneumoniae were decreased in pups lacking the common IFN-I receptor (Ifnar1−/− mice). Additionally, providing exogenous recombinant IFN-I to S. pneumoniae-infected pups was sufficient to increase bacterial shedding. The expression of IFN-stimulated genes (ISGs) was upregulated in S. pneumoniae-infected wild-type (WT) but not Ifnar1−/− mice, including genes involved in mucin type O-glycan biosynthesis; this correlated with an increase in secretions in S. pneumoniae- and IAV-infected WT compared to Ifnar1−/− pups. S. pneumoniae stimulation of ISGs was largely dependent on its pore-forming toxin, pneumolysin, and coinfection with IAV and S. pneumoniae resulted in synergistic increases in ISG expression. We conclude that the induction of IFN-I signaling appears to be a common factor driving viral and bacterial respiratory contagion. IMPORTANCE Respiratory tract infections are a leading cause of childhood mortality and, globally, Streptococcus pneumoniae is the leading cause of mortality due to pneumonia. Transmission of S. pneumoniae primarily occurs through direct contact with respiratory secretions, although the host and bacterial factors underlying transmission are poorly understood. We examined transmission dynamics of S. pneumoniae in an infant mouse model and here show that S. pneumoniae colonization of the upper respiratory tract stimulates host inflammatory pathways commonly associated with viral infections. Amplification of this response was shown to be a critical host factor driving shedding and transmission of both S. pneumoniae and influenza A virus, with infection stimulating expression of a wide variety of genes, including those involved in the biosynthesis of mucin, a major component of respiratory secretions. Our findings suggest a mechanism facilitating S. pneumoniae contagion that is shared by viral infection.



2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shaozhe Zhao ◽  
Lei Yuan ◽  
Yi Li ◽  
Longchan Liu ◽  
Zixin Luo ◽  
...  

Objective. Influenza virus poses a major threat to human health and has serious morbidity and mortality which commonly occurs in high-risk populations. Pharynx and larynx of the upper respiratory tract mucosa is the first defense line against influenza virus infection. However, the ability of the pharynx and larynx organ to eliminate the influenza pathogen is still not clear under different host conditions. Methods. In this study, a mouse model of kidney yang deficiency syndrome (KYDS) was used to mimic high-risk peoples. Two different methods of influenza A (H1N1) virus infection by nasal dropping or tracheal intubation were applied to these mice, which were divided into four groups: normal intubation (NI) group, normal nasal dropping (ND) group, model intubation (MI) group, and model nasal dropping (MD) group. The normal control (NC) group was used as a negative control. Body weight, rectal temperature, and survival rate were observed every day. Histopathologic changes, visceral index, gene expressions of H1N1, cytokine expressions, secretory IgA (SIgA) antibodies of tracheal lavage fluids in the upper respiratory tract, and bronchoalveolar lavage fluids were analyzed by ELISA. Results. The MD group had an earlier serious morbidity and mortality than the others. MI and NI groups became severe only in the 6th to 7th day after infection. The index of the lung increased significantly in NI, MI, and MD groups. Conversely, indices of the thymus and spleen increased significantly in NC and ND groups. H&E staining showed severe tissue lesions in MD, MI, and NI groups. H1N1 gene expressions were higher in the MD group compared with the MI group on the 3rd day; however, the MD group decreased significantly on the 7th day. IL-6 levels increased remarkably, and SIgA expressions decreased significantly in the MD group compared with the NC group. Conclusions. SIgA secretions are influenced directly by different conditions of the host in the pharynx and larynx in the upper respiratory tract mucosa. In the KYDS virus disease mode, SIgA expressions could be inhibited severely, which leads to serious morbidity and mortality after influenza A virus infection. The SIgA expressions of the pharynx and larynx would be an important target in high-risk populations against the influenza A virus for vaccine or antiviral drugs research.



2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Haili Zhang ◽  
Zhenyu Zhang ◽  
Yujie Wang ◽  
Meiyue Wang ◽  
Xuefeng Wang ◽  
...  

ABSTRACTThe polymerase of the influenza virus is part of the key machinery necessary for viral replication. However, the avian influenza virus polymerase is restricted in mammalian cells. The cellular protein ANP32A has been recently found to interact with viral polymerase and to influence both polymerase activity and interspecies restriction. We report here that either human ANP32A or ANP32B is indispensable for human influenza A virus RNA replication. The contribution of huANP32B is equal to that of huANP32A, and together they play a fundamental role in the activity of human influenza A virus polymerase, while neither human ANP32A nor ANP32B supports the activity of avian viral polymerase. Interestingly, we found that avian ANP32B was naturally inactive, leaving avian ANP32A alone to support viral replication. Two amino acid mutations at sites 129 to 130 in chicken ANP32B lead to the loss of support of viral replication and weak interaction with the viral polymerase complex, and these amino acids are also crucial in the maintenance of viral polymerase activity in other ANP32 proteins. Our findings strongly support ANP32A and ANP32B as key factors for both virus replication and adaptation.IMPORTANCEThe key host factors involved in the influenza A viral polymerase activity and RNA replication remain largely unknown. We provide evidence here that ANP32A and ANP32B from different species are powerful factors in the maintenance of viral polymerase activity. Human ANP32A and ANP32B contribute equally to support human influenza viral RNA replication. However, unlike avian ANP32A, the avian ANP32B is evolutionarily nonfunctional in supporting viral replication because of a mutation at sites 129 and 130. These sites play an important role in ANP32A/ANP32B and viral polymerase interaction and therefore determine viral replication, suggesting a novel interface as a potential target for the development of anti-influenza strategies.



2012 ◽  
Vol 93 (3) ◽  
pp. 531-540 ◽  
Author(s):  
Chen Xu ◽  
Wei-Bin Hu ◽  
Ke Xu ◽  
Yun-Xia He ◽  
Tong-Yan Wang ◽  
...  

It has been reported that the avian-origin influenza A virus PB1 protein (avian PB1) enhances influenza A virus polymerase activity in mammalian cells when it replaces the human-origin PB1 protein (human PB1). Characterization of the amino acid residues that contribute to this enhancement is needed. In this study, it was found that PB1 from an avian-origin influenza A virus [A/Cambodia/P0322095/2005, H5N1 (Cam)] could enhance the polymerase activity of an attenuated human isolated virus, A/WSN/33, carrying the PB2 K627E mutation (WSN627E) in vitro. Furthermore, 473V and 598P in the Cam PB1 were identified as the residues responsible for this enhanced activity. The results from recombinant virus experiments demonstrated the contribution of PB1 amino acids 473V and 598P to polymerase activity in mammalian cells and in mice. Interestingly, 473V is conserved in pH1N1 viruses from the 2009 pandemic. Substitution of 473V by leucine in pH1N1 PB1 led to a decreased viral polymerase activity and a lower growth rate in mammalian cells, suggesting that the PB1 473V also plays a role in maintaining efficient virus replication of the pH1N1 virus. Thus, it was concluded that two amino acids in avian-origin PB1, 473V and 598P, contribute to the polymerase activity of the H5N1 virus, especially in mammalian cells, and that 473V in PB1 also contributes to efficient replication of the pH1N1 strain.



2013 ◽  
Vol 87 (8) ◽  
pp. 4293-4301 ◽  
Author(s):  
R. Bodewes ◽  
J. H. C. M. Kreijtz ◽  
G. van Amerongen ◽  
M. L. B. Hillaire ◽  
S. E. Vogelzang-van Trierum ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document