scholarly journals Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in Influenza A Virus Polymerase Activity

2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Haili Zhang ◽  
Zhenyu Zhang ◽  
Yujie Wang ◽  
Meiyue Wang ◽  
Xuefeng Wang ◽  
...  

ABSTRACTThe polymerase of the influenza virus is part of the key machinery necessary for viral replication. However, the avian influenza virus polymerase is restricted in mammalian cells. The cellular protein ANP32A has been recently found to interact with viral polymerase and to influence both polymerase activity and interspecies restriction. We report here that either human ANP32A or ANP32B is indispensable for human influenza A virus RNA replication. The contribution of huANP32B is equal to that of huANP32A, and together they play a fundamental role in the activity of human influenza A virus polymerase, while neither human ANP32A nor ANP32B supports the activity of avian viral polymerase. Interestingly, we found that avian ANP32B was naturally inactive, leaving avian ANP32A alone to support viral replication. Two amino acid mutations at sites 129 to 130 in chicken ANP32B lead to the loss of support of viral replication and weak interaction with the viral polymerase complex, and these amino acids are also crucial in the maintenance of viral polymerase activity in other ANP32 proteins. Our findings strongly support ANP32A and ANP32B as key factors for both virus replication and adaptation.IMPORTANCEThe key host factors involved in the influenza A viral polymerase activity and RNA replication remain largely unknown. We provide evidence here that ANP32A and ANP32B from different species are powerful factors in the maintenance of viral polymerase activity. Human ANP32A and ANP32B contribute equally to support human influenza viral RNA replication. However, unlike avian ANP32A, the avian ANP32B is evolutionarily nonfunctional in supporting viral replication because of a mutation at sites 129 and 130. These sites play an important role in ANP32A/ANP32B and viral polymerase interaction and therefore determine viral replication, suggesting a novel interface as a potential target for the development of anti-influenza strategies.

2019 ◽  
Author(s):  
Haili Zhang ◽  
Zhenyu Zhang ◽  
Yujie Wang ◽  
Meiyue Wang ◽  
Xuefeng Wang ◽  
...  

ABSTRACTThe polymerase of the influenza virus is part of the key machinery necessary for viral replication. However, the avian influenza virus polymerase is restricted in mammalian cells. The cellular protein ANP32A has been recently found to interact with viral polymerase, and to both influence polymerase activity and interspecies restriction. Here we report that either ANP32A or ANP32B is indispensable for influenza A virus RNA replication. The contribution of ANP32B is equal to that of ANP32A, and together they play a fundamental role in the activity of mammalian influenza A virus polymerase, while neither human ANP32A nor ANP32B support the activity of avian viral polymerase. Interestingly, we found that avian ANP32B was naturally inactive, leaving ANP32A alone to support viral replication. Two amino acid mutations at sites 129-130 in chicken ANP32B lead to the loss of support of viral replication and weak interaction with the viral polymerase complex, and these amino acids are also crucial in the maintenance of viral polymerase activity in other ANP32 proteins. Our findings strongly support ANP32A&B as key factors for both virus replication and adaption.IMPORTANCEThe key host factors involved in the influenza A viral the polymerase activity and RNA replication remain largely unknown. Here we provide evidence that ANP32A and ANP32B from different species are powerful factors in the maintenance of viral polymerase activity. Human ANP32A and ANP32B contribute equally to support human influenza virus RNA replication. However, unlike avian ANP32A, the avian ANP32B is evolutionarily non-functional in supporting viral replication because of a 129-130 site mutation. The 129-130 site plays an important role in ANP32A/B and viral polymerase interaction, therefore determine viral replication, suggesting a novel interface as a potential target for the development of anti-influenza strategies.


2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Nancy Hom ◽  
Lauren Gentles ◽  
Jesse D. Bloom ◽  
Kelly K. Lee

ABSTRACTInfluenza A virus matrix protein M1 is involved in multiple stages of the viral infectious cycle. Despite its functional importance, our present understanding of this essential viral protein is limited. The roles of a small subset of specific amino acids have been reported, but a more comprehensive understanding of the relationship between M1 sequence, structure, and virus fitness remains elusive. In this study, we used deep mutational scanning to measure the effect of every amino acid substitution in M1 on viral replication in cell culture. The map of amino acid mutational tolerance we have generated allows us to identify sites that are functionally constrained in cell culture as well as sites that are less constrained. Several sites that exhibit low tolerance to mutation have been found to be critical for M1 function and production of viable virions. Surprisingly, significant portions of the M1 sequence, especially in the C-terminal domain, whose structure is undetermined, were found to be highly tolerant of amino acid variation, despite having extremely low levels of sequence diversity among natural influenza virus strains. This unexpected discrepancy indicates that not all sites in M1 that exhibit high sequence conservation in nature are under strong constraint during selection for viral replication in cell culture.IMPORTANCEThe M1 matrix protein is critical for many stages of the influenza virus infection cycle. Currently, we have an incomplete understanding of this highly conserved protein’s function and structure. Key regions of M1, particularly in the C terminus of the protein, remain poorly characterized. In this study, we used deep mutational scanning to determine the extent of M1’s tolerance to mutation. Surprisingly, nearly two-thirds of the M1 sequence exhibits a high tolerance for substitutions, contrary to the extremely low sequence diversity observed across naturally occurring M1 isolates. Sites with low mutational tolerance were also identified, suggesting that they likely play critical functional roles and are under selective pressure. These results reveal the intrinsic mutational tolerance throughout M1 and shape future inquiries probing the functions of this essential influenza A virus protein.


2022 ◽  
Author(s):  
J. Brian Kimble ◽  
Meghan Wymore Brand ◽  
Bryan S. Kaplan ◽  
Phillip Gauger ◽  
Elizabeth M. Coyle ◽  
...  

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and strains contained in vaccines may cause loss in efficacy. Whole inactivated virus (WIV) vaccines with adjuvant utilized by the swine industry are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil in water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) five weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD affected pigs exhibited a 2-fold increase in lung lesions, while VAERD affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. Importance We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed towards a conserved epitope on the HA stalk induced by an oil-in-water adjuvanted whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines to humans and the need to consider VAERD when designing and evaluating vaccine strategies.


2015 ◽  
Vol 89 (15) ◽  
pp. 8042-8049 ◽  
Author(s):  
Tsuyoshi Hayashi ◽  
Saintedym Wills ◽  
Kendra A. Bussey ◽  
Toru Takimoto

ABSTRACTMutations in the polymerase genes are known to play a major role in avian influenza virus adaptation to mammalian hosts. Despite having avian origin PA and PB2, the 2009 pandemic H1N1 virus (pH1N1) can replicate well in mammalian respiratory tracts, suggesting that these proteins have acquired mutations for efficient growth in humans. We have previously shown that PA from the pH1N1 virus A/California/04/09 (Cal) strongly enhances activity of an otherwise avian polymerase complex derived from A/chicken/Nanchang/3-120/01 (Nan) in mammalian cells. However, this enhancement was observed at 37°C but not at the lower temperature of 34°C. An additional introduction of Cal PB2 enhanced activity at 34°C, suggesting the presence of unidentified residues in Cal PB2 that are required for efficient growth at low temperature. Here, we sought to determine the key PB2 residues which confer enhanced polymerase activity and virus growth in human cells at low temperature. Using a reporter gene assay, we identified novel mutations, PB2 V661A and V683T/A684S, which are involved in enhanced Cal polymerase activity at low temperature. The PB2 T271A mutation, which we previously reported, also contributed to enhanced activity. The growth of recombinant Cal containing PB2 with Nan residues 271T/661V/683V/684A was strongly reduced in human cells compared to wild-type virus at low temperature. Among the four residues, 271A and 684S are conserved in human and pH1N1 viruses but not in avian viruses, suggesting an important role in mammalian adaptation of pH1N1 virus.IMPORTANCEThe PB2 protein plays a key role in the host adaptation, cold sensitivity, and pathogenesis of influenza A virus. Despite containing an avian origin PB2 lacking the mammalian adaptive mutations 627K or 701N, pH1N1 influenza virus strains can replicate efficiently in the low temperature upper respiratory tract of mammals, suggesting the presence of unknown mutations in the pH1N1 PB2 protein responsible for its low temperature adaptation. Here, in addition to PB2 271A, which has been shown to increase polymerase activity, we identified novel PB2 residues 661A and 683T/684S in pH1N1 which confer enhanced polymerase activity and virus growth in mammalian cells especially at low temperature. Our findings suggest that the presence of these PB2 residues contributes to efficient replication of the pH1N1 virus in the upper respiratory tract, which resulted in efficient human-to-human transmission of this virus.


2010 ◽  
Vol 84 (17) ◽  
pp. 8691-8699 ◽  
Author(s):  
Tatiana Fislová ◽  
Benjamin Thomas ◽  
Katy M. Graef ◽  
Ervin Fodor

ABSTRACT The RNA polymerase of influenza A virus is a host range determinant and virulence factor. In particular, the PB2 subunit of the RNA polymerase has been implicated as a crucial factor that affects cell tropism as well as virulence in animal models. These findings suggest that host factors associating with the PB2 protein may play an important role during viral replication. In order to identify host factors that associate with the PB2 protein, we purified recombinant PB2 from transiently transfected mammalian cells and identified copurifying host proteins by mass spectrometry. We found that the PB2 protein associates with the cytosolic chaperonin containing TCP-1 (CCT), stress-induced phosphoprotein 1 (STIP1), FK506 binding protein 5 (FKBP5), α- and β-tubulin, Hsp60, and mitochondrial protein p32. Some of these binding partners associate with each other, suggesting that PB2 might interact with these proteins in multimeric complexes. More detailed analysis of the interaction of the PB2 protein with CCT revealed that PB2 associates with CCT as a monomer and that the CCT binding site is located in a central region of the PB2 protein. PB2 proteins from various influenza virus subtypes and origins can associate with CCT. Silencing of CCT resulted in reduced viral replication and reduced PB2 protein and viral RNA accumulation in a ribonucleoprotein reconstitution assay, suggesting an important function for CCT during the influenza virus life cycle. We propose that CCT might be acting as a chaperone for PB2 to aid its folding and possibly its incorporation into the trimeric RNA polymerase complex.


2017 ◽  
Vol 91 (7) ◽  
Author(s):  
Benjamin E. Nilsson ◽  
Aartjan J. W. te Velthuis ◽  
Ervin Fodor

ABSTRACT The RNA genome of influenza A viruses is transcribed and replicated by the viral RNA-dependent RNA polymerase, composed of the subunits PA, PB1, and PB2. High-resolution structural data revealed that the polymerase assembles into a central polymerase core and several auxiliary highly flexible, protruding domains. The auxiliary PB2 cap-binding and the PA endonuclease domains are both involved in cap snatching, but the role of the auxiliary PB2 627 domain, implicated in host range restriction of influenza A viruses, is still poorly understood. In this study, we used structure-guided truncations of the PB2 subunit to show that a PB2 subunit lacking the 627 domain accumulates in the cell nucleus and assembles into a heterotrimeric polymerase with PB1 and PA. Furthermore, we showed that a recombinant viral polymerase lacking the PB2 627 domain is able to carry out cap snatching, cap-dependent transcription initiation, and cap-independent ApG dinucleotide extension in vitro, indicating that the PB2 627 domain of the influenza virus RNA polymerase is not involved in core catalytic functions of the polymerase. However, in a cellular context, the 627 domain is essential for both transcription and replication. In particular, we showed that the PB2 627 domain is essential for the accumulation of the cRNA replicative intermediate in infected cells. Together, these results further our understanding of the role of the PB2 627 domain in transcription and replication of the influenza virus RNA genome. IMPORTANCE Influenza A viruses are a major global health threat, not only causing disease in both humans and birds but also placing significant strains on economies worldwide. Avian influenza A virus polymerases typically do not function efficiently in mammalian hosts and require adaptive mutations to restore polymerase activity. These adaptations include mutations in the 627 domain of the PB2 subunit of the viral polymerase, but it still remains to be established how these mutations enable host adaptation on a molecular level. In this report, we characterize the role of the 627 domain in polymerase function and offer insights into the replication mechanism of influenza A viruses.


2012 ◽  
Vol 93 (3) ◽  
pp. 531-540 ◽  
Author(s):  
Chen Xu ◽  
Wei-Bin Hu ◽  
Ke Xu ◽  
Yun-Xia He ◽  
Tong-Yan Wang ◽  
...  

It has been reported that the avian-origin influenza A virus PB1 protein (avian PB1) enhances influenza A virus polymerase activity in mammalian cells when it replaces the human-origin PB1 protein (human PB1). Characterization of the amino acid residues that contribute to this enhancement is needed. In this study, it was found that PB1 from an avian-origin influenza A virus [A/Cambodia/P0322095/2005, H5N1 (Cam)] could enhance the polymerase activity of an attenuated human isolated virus, A/WSN/33, carrying the PB2 K627E mutation (WSN627E) in vitro. Furthermore, 473V and 598P in the Cam PB1 were identified as the residues responsible for this enhanced activity. The results from recombinant virus experiments demonstrated the contribution of PB1 amino acids 473V and 598P to polymerase activity in mammalian cells and in mice. Interestingly, 473V is conserved in pH1N1 viruses from the 2009 pandemic. Substitution of 473V by leucine in pH1N1 PB1 led to a decreased viral polymerase activity and a lower growth rate in mammalian cells, suggesting that the PB1 473V also plays a role in maintaining efficient virus replication of the pH1N1 virus. Thus, it was concluded that two amino acids in avian-origin PB1, 473V and 598P, contribute to the polymerase activity of the H5N1 virus, especially in mammalian cells, and that 473V in PB1 also contributes to efficient replication of the pH1N1 strain.


2009 ◽  
Vol 84 (1) ◽  
pp. 558-564 ◽  
Author(s):  
Julie L. McAuley ◽  
Kelly Zhang ◽  
Jonathan A. McCullers

ABSTRACT The influenza A virus PB1-F2 protein has been implicated as a virulence factor, but the mechanism by which it enhances pathogenicity is not understood. The PB1 gene segment of the H1N1 swine-origin influenza virus pandemic strain codes for a truncated PB1-F2 protein which terminates after 11 amino acids but could acquire the full-length form by mutation or reassortment. It is therefore important to understand the function and impact of this protein. We systematically assessed the effect that PB1-F2 expression has on viral polymerase activity, accumulation and localization of PB1, and replication in vitro and in mice. We used both the laboratory strain PR8 and a set of viruses engineered to study clinically relevant PB1-F2 proteins. PB1-F2 expression had modest effects on polymerase activity, PB1 accumulation, and replication that were cell type and virus strain dependent. Disruption of the PB1-F2 reading frame in a recent, seasonal H3N2 influenza virus strain did not affect these parameters, suggesting that this is not a universal function of the protein. Disruption of PB1-F2 expression in several backgrounds or expression of PB1-F2 from the 1918 pandemic strain or a 1956 H1N1 strain had no effect on viral lung loads in mice. Alternate mechanisms besides alterations to replication are likely responsible for the enhanced virulence in mammalian hosts attributed to PB1-F2 in previous studies.


Sign in / Sign up

Export Citation Format

Share Document