scholarly journals Unique Signaling Properties of CTAR1 in LMP1-Mediated Transformation

2007 ◽  
Vol 81 (18) ◽  
pp. 9680-9692 ◽  
Author(s):  
Bernardo A. Mainou ◽  
David N. Everly ◽  
Nancy Raab-Traub

ABSTRACT The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) gene is considered the EBV oncogene as it is necessary for EBV-mediated transformation of B lymphocytes and itself transforms rodent fibroblasts. LMP1 activates the NF-κB, phosphatidylinositol 3-kinase (PI3K)-Akt, mitogen-activated protein kinase, and Jun N-terminal protein kinase signaling pathways through its two signaling domains, carboxyl-terminal activating regions 1 and 2 (CTAR1 and CTAR2). CTAR1 and CTAR2 induce signal transduction pathways through their direct (CTAR1) or indirect (CTAR2) recruitment of tumor necrosis factor receptor-associated factors (TRAFs). CTAR1 is necessary for LMP1-mediated transformation as well as activation of PI3K signaling and induction of cell cycle markers associated with G1/S transition. In this study, activation of PI3K-Akt signaling and deregulation of cell cycle markers were mapped to the TRAF-binding domain within CTAR1 and to the residues between CTAR1 and CTAR2. LMP1 CTAR1 also activated the MEK1/2-extracellular signal-regulated kinase 1/2 signaling pathway, and this activation was necessary for LMP1-induced transformation of Rat-1 fibroblasts. Dominant-negative forms of TRAF2 and TRAF3 inhibited but did not fully block LMP1-mediated transformation. These findings identify a new signaling pathway that is uniquely activated by the TRAF-binding domain of LMP1 and is required for transformation.

2015 ◽  
Vol 90 (2) ◽  
pp. 1129-1138 ◽  
Author(s):  
XueQiao Liu ◽  
Jeffrey I. Cohen

ABSTRACTEpstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus associated with both B cell and epithelial cell malignancies. EBV infection of B cells triggers activation of several signaling pathways that are critical for cell survival, virus latency, and growth transformation. To identify EBV proteins important for regulating cell signaling, we used a proteomic approach to screen viral proteins for AP-1 and NF-κB promoter activity in AP-1– and NF-κB–luciferase reporter assays. We found that EBV BGLF2 activated AP-1 but not NF-κB reporter activity. Expression of EBV BGLF2 in cells activated p38 and c-Jun N-terminal kinase (JNK), both of which are important for mitogen-activated protein kinase (MAPK) signaling. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of BGLF2 to activate JNK and p38. Expression of BGLF2 enhanced BZLF1 expression in latently EBV-infected lymphoblastoid cell lines, and knockdown of BGLF2 reduced EBV reactivation induced by IgG cross-linking. Expression of BGLF2 induced BZLF1 expression and virus production in EBV-infected gastric carcinoma cells. BGLF2 enhanced BZLF1 expression and EBV production by activating p38; chemical inhibition of p38 and MAPK/ERK kinases 1 and 2 (MEK1/2) reduced expression of BZLF1 and virus production induced by BGLF2. In summary, the EBV tegument protein BGLF2, which is delivered to the cell at the onset of virus infection, activates the AP-1 pathway and enhances EBV reactivation and virus production.IMPORTANCEEpstein-Barr virus (EBV) is associated with both B cell and epithelial cell malignancies, and the virus activates multiple signaling pathways important for its persistence in latently infected cells. We identified a viral tegument protein, BGLF2, which activates members of the mitogen-activated protein kinase signaling pathway. Expression of BGLF2 increased expression of EBV BZLF1, which activates a switch from latent to lytic virus infection, and increased production of EBV. Inhibition of BGFL2 expression or inhibition of p38/MAPK, which is activated by BGLF2, reduced virus reactivation from latency. These results indicate that a viral tegument protein which is delivered to cells upon infection activates signaling pathways to enhance virus production and facilitate virus reactivation from latency.


2002 ◽  
Vol 22 (17) ◽  
pp. 6023-6033 ◽  
Author(s):  
Scott T. Eblen ◽  
Jill K. Slack ◽  
Michael J. Weber ◽  
Andrew D. Catling

ABSTRACT Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-Δ19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-Δ19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.


2005 ◽  
Vol 79 (3) ◽  
pp. 1789-1802 ◽  
Author(s):  
Michael D. Allen ◽  
Lawrence S. Young ◽  
Christopher W. Dawson

ABSTRACT The frequent expression of latent membrane proteins LMP2A and LMP2B in Epstein Barr virus (EBV)-associated tumors suggests that these proteins play a role in EBV-induced epithelial cell growth transformation. Expression of LMP2A and LMP2B had no effect on the morphology of squamous epithelial cells in monolayer culture, but their expression was associated with an increased capacity to spread and migrate on extracellular matrix. Although the mechanisms by which LMP2A and LMP2B promote cell spreading and motility are unclear, the use of selective pharmacological inhibitors has established a role for tyrosine kinases in this phenotype but ruled out contributions of phosphatidylinositol 3-kinase, extracellular signal-regulated kinase/mitogen-activated protein kinase, and protein kinase C. The ability of LMP2B to induce a phenotype that is virtually indistinguishable from that of LMP2A suggests that regions of the LMP2 protein in addition to the cytosolic amino terminus are capable of inducing phenotypic effects in epithelial cells. Thus, rather than serving to modulate the activity of LMP2A, LMP2B may directly engage signaling pathways to influence epithelial cell behavior such as cell adhesion and motility.


2002 ◽  
Vol 22 (4) ◽  
pp. 992-1000 ◽  
Author(s):  
Junko Mizukami ◽  
Giichi Takaesu ◽  
Hiroyuki Akatsuka ◽  
Hiroaki Sakurai ◽  
Jun Ninomiya-Tsuji ◽  
...  

ABSTRACT The receptor activator of NF-κB (RANK) and its ligand RANKL are key molecules for differentiation and activation of osteoclasts. RANKL stimulates transcription factors AP-1 through mitogen-activated protein kinase (MAPK) activation, and NF-κB through IκB kinase (IKK) activation. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is essential for activation of these kinases. In the interleukin-1 signaling pathway, TAK1 MAPK kinase kinase (MAPKKK) mediates MAPK and IKK activation via interaction with TRAF6, and TAB2 acts as an adapter linking TAK1 and TRAF6. Here, we demonstrate that TAK1 and TAB2 participate in the RANK signaling pathway. Dominant negative forms of TAK1 and TAB2 inhibit NF-κB activation induced by overexpression of RANK. In 293 cells stably transfected with full-length RANK, RANKL stimulation facilitates the formation of a complex containing RANK, TRAF6, TAB2, and TAK1, leading to the activation of TAK1. Furthermore, in murine monocyte RAW 264.7 cells, dominant negative forms of TAK1 and TAB2 inhibit NF-κB activation induced by RANKL and endogenous TAK1 is activated in response to RANKL stimulation. These results suggest that the formation of the TRAF6-TAB2-TAK1 complex is involved in the RANK signaling pathway and may regulate the development and function of osteoclasts.


2004 ◽  
Vol 78 (21) ◽  
pp. 11798-11806 ◽  
Author(s):  
Xiangrong Gao ◽  
Haoran Wang ◽  
Takeshi Sairenji

ABSTRACT Latent Epstein-Barr virus (EBV) is reactivated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in EBV-infected cells. In this study, we found that TPA up-regulated phosphorylation of p38, a mitogen-activated protein kinase, and activated c-myc mRNA in EBV-positive epithelial GT38 cells. The EBV immediate-early gene BZLF1 mRNA and its product ZEBRA protein were induced following TPA treatment. Protein kinase C inhibitors, 1-(5-isoquinolinesulphonyl)-2, 5-dimethylpiperazine (H7) and staurosporine, inhibited the induction of p38 phosphorylation and the activation of c-Myc by TPA. The p38 inhibitor SB203580 blocked both p38 phosphorylation and ZEBRA expression by TPA. Pretreatment of GT38 cells with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine inhibited p38 phosphorylation and c-Myc activation by TPA, suggesting that NO may inhibit EBV reactivation via both p38 and c-Myc. By using short interfering RNA (siRNA) targeting either p38 or c-myc, we found that p38 or c-myc siRNA specifically inhibited expression of the respective gene and also suppressed the induction of ZEBRA and EBV early antigen. The interferon (IFN)-responsive gene expression tests ruled out the possibility that the antiviral effect of siRNA is dependent on IFN. Our present study demonstrates for the first time that either p38 or c-myc siRNA can efficiently inhibit TPA-induced EBV reactivation in GT38 cells, indicating that p38- and/or c-myc-associated signaling pathways may play critical roles in the disruption of EBV latency by TPA.


Sign in / Sign up

Export Citation Format

Share Document