scholarly journals NLRX1 Mediates MAVS Degradation To Attenuate the Hepatitis C Virus-Induced Innate Immune Response through PCBP2

2017 ◽  
Vol 91 (23) ◽  
Author(s):  
Yuwen Qin ◽  
Binbin Xue ◽  
Chunyan Liu ◽  
Xiaohong Wang ◽  
Renyun Tian ◽  
...  

ABSTRACT Activation of innate immunity is essential for host cells to restrict the spread of invading viruses and other pathogens. However, attenuation or termination of signaling is also necessary for preventing immune-mediated tissue damage and spontaneous autoimmunity. Here, we identify nucleotide binding oligomerization domain (NOD)-like receptor X1 (NLRX1) as a negative regulator of the mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathway during hepatitis C virus (HCV) infection. The depletion of NLRX1 enhances the HCV-triggered activation of interferon (IFN) signaling and causes the suppression of HCV propagation in hepatocytes. NLRX1, a HCV-inducible protein, interacts with MAVS and mediates the K48-linked polyubiquitination and subsequent degradation of MAVS via the proteasomal pathway. Moreover, poly(rC) binding protein 2 (PCBP2) interacts with NLRX1 to participate in the NLRX1-induced degradation of MAVS and the inhibition of antiviral responses during HCV infection. Mutagenic analyses further revealed that the NOD of NLRX1 is essential for NLRX1 to interact with PCBP2 and subsequently induce MAVS degradation. Our study unlocks a key mechanism of the fine-tuning of innate immunity by which NLRX1 restrains the retinoic acid-inducible gene I-like receptor (RLR)-MAVS signaling cascade by recruiting PCBP2 to MAVS for inducing MAVS degradation through the proteasomal pathway. NLRX1, a negative regulator of innate immunity, is a pivotal host factor for HCV to establish persistent infection. IMPORTANCE Innate immunity needs to be tightly regulated to maximize the antiviral response and minimize immune-mediated pathology, but the underlying mechanisms are poorly understood. In this study, we report that NLRX1 is a proviral host factor for HCV infection and functions as a negative regulator of the HCV-triggered innate immune response. NLRX1 recruits PCBP2 to MAVS and induces the K48-linked polyubiquitination and degradation of MAVS, leading to the negative regulation of the IFN signaling pathway and promoting HCV infection. Overall, this study provides intriguing insights into how innate immunity is regulated during viral infection.

Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 313
Author(s):  
Daniel Sepulveda-Crespo ◽  
Salvador Resino ◽  
Isidoro Martinez

Despite successful treatments, hepatitis C virus (HCV) infections continue to be a significant world health problem. High treatment costs, the high number of undiagnosed individuals, and the difficulty to access to treatment, particularly in marginalized susceptible populations, make it improbable to achieve the global control of the virus in the absence of an effective preventive vaccine. Current vaccine development is mostly focused on weakly immunogenic subunits, such as surface glycoproteins or non-structural proteins, in the case of HCV. Adjuvants are critical components of vaccine formulations that increase immunogenic performance. As we learn more information about how adjuvants work, it is becoming clear that proper stimulation of innate immunity is crucial to achieving a successful immunization. Several hepatic cell types participate in the early innate immune response and the subsequent inflammation and activation of the adaptive response, principally hepatocytes, and antigen-presenting cells (Kupffer cells, and dendritic cells). Innate pattern recognition receptors on these cells, mainly toll-like receptors, are targets for new promising adjuvants. Moreover, complex adjuvants that stimulate different components of the innate immunity are showing encouraging results and are being incorporated in current vaccines. Recent studies on HCV-vaccine adjuvants have shown that the induction of a strong T- and B-cell immune response might be enhanced by choosing the right adjuvant.


2015 ◽  
Vol 89 (13) ◽  
pp. 6608-6618 ◽  
Author(s):  
Chuanlong Zhu ◽  
Fei Xiao ◽  
Jian Hong ◽  
Kun Wang ◽  
Xiao Liu ◽  
...  

ABSTRACTThe elongation factor Tu GTP binding domain-containing protein 2 (EFTUD2) was identified as an anti-hepatitis C virus (HCV) host factor in our recent genome-wide small interfering RNA (siRNA) screen. In this study, we sought to further determine EFTUD2's role in HCV infection and investigate the interaction between EFTUD2 and other regulators involved in HCV innate immune (RIG-I, MDA5, TBK1, and IRF3) and JAK-STAT1 pathways. We found that HCV infection decreased the expression of EFTUD2 and the viral RNA sensors RIG-I and MDA5 in HCV-infected Huh7 and Huh7.5.1 cells and in liver tissue from in HCV-infected patients, suggesting that HCV infection downregulated EFTUD2 expression to circumvent the innate immune response. EFTUD2 inhibited HCV infection by inducing expression of the interferon (IFN)-stimulated genes (ISGs) in Huh7 cells. However, its impact on HCV infection was absent in both RIG-I knockdown Huh7 cells and RIG-I-defective Huh7.5.1 cells, indicating that the antiviral effect of EFTUD2 is dependent on RIG-I. Furthermore, EFTUD2 upregulated the expression of the RIG-I-like receptors (RLRs) RIG-I and MDA5 to enhance the innate immune response by gene splicing. Functional experiments revealed that EFTUD2-induced expression of ISGs was mediated through interaction of the EFTUD2 downstream regulators RIG-I, MDA5, TBK1, and IRF3. Interestingly, the EFTUD2-induced antiviral effect was independent of the classical IFN-induced JAK-STAT pathway. Our data demonstrate that EFTUD2 restricts HCV infection mainly through an RIG-I/MDA5-mediated, JAK-STAT-independent pathway, thereby revealing the participation of EFTUD2 as a novel innate immune regulator and suggesting a potentially targetable antiviral pathway.IMPORTANCEInnate immunity is the first line defense against HCV and determines the outcome of HCV infection. Based on a recent high-throughput whole-genome siRNA library screen revealing a network of host factors mediating antiviral effects against HCV, we identified EFTUD2 as a novel innate immune regulator against HCV in the infectious HCV cell culture model and confirmed that its expression in HCV-infected liver tissue is inversely related to HCV infection. Furthermore, we determined that EFTUD2 exerts its antiviral activity mainly through governing its downstream regulators RIG-I and MDA5 by gene splicing to activate IRF3 and induce classical ISG expression independent of the JAT-STAT signaling pathway. This study broadens our understanding of the HCV innate immune response and provides a possible new antiviral strategy targeting this novel regulator of the innate response.


Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 191
Author(s):  
Emmanuelle Blanchard ◽  
Philippe Roingeard

Host cell membrane rearrangements induced by the hepatitis C virus (HCV) have been exclusively studied in vitro. These studies have shown that HCV induces double-membrane vesicles (DMVs), which probably serve to separate replication sites from the cytoplasmic sensors of the innate immune response. We report for the first time the observation of HCV-induced membrane rearrangements in liver biopsy specimens from patients chronically infected with HCV. Unlike observations performed in vitro, the membranous web detected in liver tissue seems essentially made of clusters of single-membrane vesicles derived from the endoplasmic reticulum and close to lipid droplets. This suggests that the DMVs could be a hallmark of laboratory-adapted HCV strains, possibly due to their ability to achieve a high level of replication. Alternatively, the concealment of viral RNA in DMVs may be part of innate immune response mechanisms particularly developed in hepatoma cell lines cultured in vitro. In any case, this constitutes the first report showing the differences in the membranous web established by HCV in vitro and in vivo.


Hepatology ◽  
2011 ◽  
Vol 53 (2) ◽  
pp. 406-414 ◽  
Author(s):  
Shubham Shrivastava ◽  
Amit Raychoudhuri ◽  
Robert Steele ◽  
Ranjit Ray ◽  
Ratna B. Ray

Hepatology ◽  
2014 ◽  
Vol 60 (4) ◽  
pp. 1170-1179 ◽  
Author(s):  
Benjamin Israelow ◽  
Christopher M. Narbus ◽  
Marion Sourisseau ◽  
Matthew J. Evans

2016 ◽  
Vol 291 (23) ◽  
pp. 12294-12309 ◽  
Author(s):  
Dahai Wei ◽  
Nan L. Li ◽  
Yanli Zeng ◽  
Baoming Liu ◽  
Kattareeya Kumthip ◽  
...  

2015 ◽  
Vol 89 (21) ◽  
pp. 11056-11068 ◽  
Author(s):  
Alison Kell ◽  
Mark Stoddard ◽  
Hui Li ◽  
Joe Marcotrigiano ◽  
George M. Shaw ◽  
...  

ABSTRACTDespite the introduction of direct-acting antiviral (DAA) drugs against hepatitis C virus (HCV), infection remains a major public health concern because DAA therapeutics do not prevent reinfection and patients can still progress to chronic liver disease. Chronic HCV infection is supported by a variety of viral immune evasion strategies, but, remarkably, 20% to 30% of acute infections spontaneously clear prior to development of adaptive immune responses, thus implicating innate immunity in resolving acute HCV infection. However, the virus-host interactions regulating acute infection are unknown. Transmission of HCV involves one or a few transmitted/founder (T/F) variants. In infected hepatocytes, the retinoic acid-inducible gene I (RIG-I) protein recognizes 5′ triphosphate (5′ppp) of the HCV RNA and a pathogen-associated molecular pattern (PAMP) motif located within the 3′ untranslated region consisting of poly-U/UC. PAMP binding activates RIG-I to induce innate immune signaling and type 1 interferon antiviral defenses. HCV poly-U/UC sequences can differ in length and complexity, suggesting that PAMP diversity in T/F genomes could regulate innate immune control of acute HCV infection. Using 14 unique poly-U/UC sequences from HCV T/F genomes recovered from acute-infection patients, we tested whether RIG-I recognition and innate immune activation correlate with PAMP sequence characteristics. We show that T/F variants are recognized by RIG-I in a manner dependent on length of the U-core motif of the poly-U/UC PAMP and are recognized by RIG-I to induce innate immune responses that restrict acute infection. PAMP recognition of T/F HCV variants by RIG-I may therefore impart innate immune signaling and HCV restriction to impact acute-phase-to-chronic-phase transition.IMPORTANCERecognition of nonself molecular patterns such as those seen with viral nucleic acids is an essential step in triggering the immune response to virus infection. Innate immunity is induced by hepatitis C virus infection through the recognition of viral RNA by the cellular RIG-I protein, where RIG-I recognizes a poly-uridine/cytosine motif in the viral genome. Variation within this motif may provide an immune evasion strategy for transmitted/founder viruses during acute infection. Using 14 unique poly-U/UC sequences from HCV T/F genomes recovered from acutely infected HCV patients, we demonstrate that RIG-I binding and activation of innate immunity depend primarily on the length of the uridine core within this motif. T/F variants found in acute infection contained longer U cores within the motif and could activate RIG-I and induce innate immune signaling sufficient to restrict viral infection. Thus, recognition of T/F variants by RIG-I could significantly impact the transition from acute to chronic infection.


Sign in / Sign up

Export Citation Format

Share Document