scholarly journals Role of Substitutions in the Hemagglutinin in the Emergence of the 1968 Pandemic Influenza Virus

2015 ◽  
Vol 89 (23) ◽  
pp. 12211-12216 ◽  
Author(s):  
Sjouke Van Poucke ◽  
Jennifer Doedt ◽  
Jan Baumann ◽  
Yu Qiu ◽  
Tatyana Matrosovich ◽  
...  

Hemagglutinin (HA) of H3N2/1968 pandemic influenza viruses differs from the putative avian precursor by seven amino acid substitutions. Substitutions Q226L and G228S are known to be essential for adaptation of avian HA to mammals. We found that introduction of avian-virus-like amino acids at five other HA positions (positions 62, 81, 92, 144, and 193) of A/Hong Kong/1/1968 virus decreased viral replication in human cells and transmission in pigs. Thus, substitutions at some of these positions facilitated emergence of the pandemic virus.

2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


1999 ◽  
Vol 73 (4) ◽  
pp. 3366-3374 ◽  
Author(s):  
Nan Nan Zhou ◽  
Kennedy F. Shortridge ◽  
Eric C. J. Claas ◽  
Scott L. Krauss ◽  
Robert G. Webster

ABSTRACT The H5N1 avian influenza virus that killed 6 of 18 persons infected in Hong Kong in 1997 was transmitted directly from poultry to humans. Viral isolates from this outbreak may provide molecular clues to zoonotic transfer. Here we demonstrate that the H5N1 viruses circulating in poultry comprised two distinguishable phylogenetic lineages in all genes that were in very rapid evolution. When introduced into new hosts, influenza viruses usually undergo rapid alteration of their surface glycoproteins, especially in the hemagglutinin (HA). Surprisingly, these H5N1 isolates had a large proportion of amino acid changes in all gene products except in the HA. These viruses maybe reassortants each of whose HA gene is well adapted to domestic poultry while the rest of the genome arises from a different source. The consensus amino acid sequences of “internal” virion proteins reveal amino acids previously found in human strains. These human-specific amino acids may be important factors in zoonotic transmission.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liu Lina ◽  
Chen Saijuan ◽  
Wang Chengyu ◽  
Lu Yuefeng ◽  
Dong Shishan ◽  
...  

AbstractH9N2 is the most prevalent low pathogenic avian influenza virus (LPAIV) in domestic poultry in the world. Two distinct H9N2 poultry lineages, G1-like (A/quail/Hong Kong/G1/97) and Y280-like (A/Duck/Hong Kong/Y280/1997) viruses, are usually associated with binding affinity for both α 2,3 and α 2,6 sialic acid receptors (avian and human receptors), raising concern whether these viruses possess pandemic potential. To explore the impact of mouse adaptation on the transmissibility of a Y280-like virus A/Chicken/Hubei/214/2017(H9N2) (abbreviated as WT), we performed serial lung-to-lung passages of the WT virus in mice. The mouse-adapted variant (MA) exhibited enhanced pathogenicity and advantaged transmissibility after passaging in mice. Sequence analysis of the complete genomes of the MA virus revealed a total of 16 amino acid substitutions. These mutations distributed across 7 segments including PB2, PB1, PA, NP, HA, NA and NS1 genes. Furthermore, we generated a panel of recombinant or mutant H9N2 viruses using reverse genetics technology and confirmed that the PB2 gene governing the increased pathogenicity and transmissibility. The combinations of 340 K and 588 V in PB2 were important in determining the altered features. Our findings elucidate the specific mutations in PB2 contribute to the phenotype differences and emphasize the importance of monitoring the identified amino acid substitutions due to their potential threat to human health.


2016 ◽  
Vol 90 (13) ◽  
pp. 5928-5938 ◽  
Author(s):  
Benjamin Mänz ◽  
Miranda de Graaf ◽  
Ramona Mögling ◽  
Mathilde Richard ◽  
Theo M. Bestebroer ◽  
...  

ABSTRACTA strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified usingin vitroassays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts.IMPORTANCEInfluenza viruses from birds jump the species barrier into humans relatively frequently. Such influenza virus zoonoses may pose public health risks if the virus adapts to humans and becomes a pandemic threat. Relatively few amino acid substitutions—most notably in the receptor binding site of hemagglutinin and at positions 591 and 627 in the polymerase protein PB2—have been identified in pandemic influenza virus strains as determinants of host adaptation, to facilitate efficient virus replication and transmission in humans. Here, we show that substantial numbers of amino acid substitutions are functionally compensating for the lack of the above-mentioned mutations in PB2 and could facilitate influenza virus emergence in humans.


2019 ◽  
Author(s):  
Huaxiang Rao ◽  
Hong Li ◽  
Nannan Lu ◽  
Youju Lei ◽  
Shengcang Zhao ◽  
...  

Abstract Background Influenza H3N2 virus has a faster evolution rate than other types of influenza viruses. This study was performed to better understand the molecular evolution of influenza H3N2 in Qinghai Province, China in 2017.Methods Complete sequences of eight gene segments of two influenza H3N2 isolates in 2017 in Qinghai Province were sequenced and analyzed by MEGA 6.06 software.Results Phylogenetic analysis showed that two Qinghai H3N2 isolates were relatively close to the 2016–2017 vaccine strain, 3C.2a-A/Hong Kong/4801/2014. In HA protein, compared with the 2015-2016 WHO recommended vaccine strain A/Switzerland/971 5293/2013, six amino acid substitutions were observed in epitopes A and B in Qinghai isolates in 2017, however, only two amino acid substitutions were observed in epitopes A and B in Qinghai isolates compared with the A/Hong Kong/4801/2014, which indicated 2016-2017 vaccine strain might have a better protection against the strains circulating in Qinghai Province in 2017 . Besides, amino acid substitution of K160T at the glycosylation site of HA and H75P in PB1-F2 in the two Qinghai isolates might affect the antibodies binding ability and the virulence of influenza virus. And there was no key amino acid substitution in the key sites of segment NA, M, NP, NS, PA and PB2.Conclusions The presence of several antigenic site mutations in Qinghai H3N2 isolates confirms the evolution of circulating H3N2 strains. Enhancing the surveillance of influenza epidemic by whole genome sequencing is important to monitor whether the selected vaccine strains are protective against the circulating strains in Qinghai Province.


2008 ◽  
Vol 82 (16) ◽  
pp. 8204-8209 ◽  
Author(s):  
Allen C. Bateman ◽  
Marc G. Busch ◽  
Alexander I. Karasin ◽  
Nicolai Bovin ◽  
Christopher W. Olsen

ABSTRACT Avian lineage H4N6 influenza viruses previously isolated from pigs differ at hemagglutinin amino acids 226 and 228 from H4 subtype viruses isolated from birds. Using a parental H4N6 swine isolate and hemagglutinin mutant viruses (at residues 226 and/or 228), we determined that viruses which contain L226 had a higher affinity for sialic acid α2,6 galactose (SAα2,6Gal) and a higher infectivity level for primary swine and human respiratory epithelial cells, whereas viruses which contain Q226 had lower SAα2,6Gal affinity and lower infectivity levels for both types of cells. Using specific neuraminidases, we found that irrespective of their relative binding preferences, all of the influenza viruses examined utilized SAα2,6Gal to infect swine and human cells.


2021 ◽  
Author(s):  
Jianmei Yang ◽  
Pei Zhang ◽  
Min Huang ◽  
Shuyuan Qiao ◽  
Qinfang Liu ◽  
...  

Based on our previous studies, we show that M gene is critical for viral replication and pathogenicity of the chimeric H17 bat influenza virus (Bat09:mH1mN1) by replacing bat M gene with those from human and swine influenza A viruses. However, the key amino acids of M1 and/or M2 proteins responsible for virus replication and pathogenicity remain unknown. In this study, the Eurasian avian-like M gene from the A/California/04/2009 pandemic H1N1 virus significantly decreased viral replication in both mammalian and avian cells in the background of chimeric H17 bat influenza virus by replacing the PR8 M gene. Further studies revealed that the M1 was more crucial for viral growth and pathogenicity in contrast to the M2, and amino acid residues of M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of M1 and M2 proteins identified in this study might be important for influenza virus surveillance and used to produce live attenuated vaccines in the future. Importance The M1 and M2 proteins influence the morphology, replication, virulence and transmissibility of influenza viruses. Although a few key residues in M1/M2 proteins have been identified, whether other residues of M1/M2 proteins involved in viral replication and pathogenicity need to be discovered. In the background of chimeric H17 bat influenza virus, the Eurasian avian-like M gene from A/California/04/2009 significantly decreased viral growth in mammalian and avian cells. Further study showed that M1 was implicated more than M2 for viral growth and pathogenicity in vitro and in vivo , and the key amino acid residues of M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of M1 and M2 proteins could be used for influenza virus surveillance and live attenuated vaccine application in the future. These findings provide important information for knowledge on the genetic basis of virulence of influenza viruses.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 78 ◽  
Author(s):  
Aharona Glatman-Freedman ◽  
Rakefet Pando ◽  
Hanna Sefty ◽  
Itay Omer ◽  
Alina Rosenberg ◽  
...  

Background: Influenza A (H3N2) clade 3C.3a was the predominant influenza virus in Israel throughout the 2018-2019 season, constituting a drift from the influenza A (H3N2) vaccine. We estimated the end-of season vaccine effectiveness (VE) by age, among community patients with influenza-like illness (ILI), considering the hemagglutinin (HA) gene mutations and amino acid substitutions of influenza A (H3N2) viruses detected. Methods: Nose-throat samples were analyzed for the presence of influenza virus, type/subtype, and HA gene sequence. HA gene sequences and amino acid substitutions were compared to the influenza A/Singapore/INFIMH-16-0019/2016 (H3N2)-like 2018-2019 vaccine virus, and a phylogenetic tree was generated. Influenza VE against influenza A (H3N2) was estimated using the test-negative design. VE was estimated by age group and by 15 year moving age intervals. Results: In total, 90% of the influenza A (H3N2) viruses belonged to the 3C.3a clade, constituting a unique situation in the northern hemisphere. Adjusted all-age influenza A (H3N2) VE was −3.5% (95% CI: −51.2 to 29.1). Although adjusted VEs were very low among infants, children, and young adults, a VE of 45% (95% CI: −19.2 to 74.6) was estimated among adults aged ≥45 years old. Conclusions: The higher VE point estimates among older adults may be related to previous exposure to similar influenza viruses.


2007 ◽  
Vol 81 (19) ◽  
pp. 10292-10299 ◽  
Author(s):  
David B. Finkelstein ◽  
Suraj Mukatira ◽  
Perdeep K. Mehta ◽  
John C. Obenauer ◽  
Xiaoping Su ◽  
...  

ABSTRACT Avian influenza viruses have adapted to human hosts, causing pandemics in humans. The key host-specific amino acid mutations required for an avian influenza virus to function in humans are unknown. Through multiple-sequence alignment and statistical testing of each aligned amino acid, we identified markers that discriminate human influenza viruses from avian influenza viruses. We applied strict thresholds to select only markers which are highly preserved in human influenza virus isolates over time. We found that a subset of these persistent host markers exist in all human pandemic influenza virus sequences from 1918, 1957, and 1968, while others are acquired as the virus becomes a seasonal influenza virus. We also show that human H5N1 influenza viruses are significantly more likely to contain the amino acid predominant in human strains for a few persistent host markers than avian H5N1 influenza viruses. This sporadic enrichment of amino acids present in human-hosted viruses may indicate that some H5N1 viruses have made modest adaptations to their new hosts in the recent past. The markers reported here should be useful in monitoring potential pandemic influenza viruses.


Sign in / Sign up

Export Citation Format

Share Document