scholarly journals Optimal Replication of Human Cytomegalovirus Correlates with Endocytosis of Glycoprotein gpUL132

2010 ◽  
Vol 84 (14) ◽  
pp. 7039-7052 ◽  
Author(s):  
Barbara Kropff ◽  
Yvonne Koedel ◽  
William Britt ◽  
Michael Mach

ABSTRACT Envelopment of a herpesvirus particle is a complex process of which much is still to be learned. We previously identified the glycoprotein gpUL132 of human cytomegalovirus (HCMV) as an envelope component of the virion. In its carboxy-terminal portion, gpUL132 contains at least four motifs for sorting of transmembrane proteins to endosomes; among them are one dileucine-based signal and three tyrosine-based signals of the YXXØ and NPXY (where X stands for any amino acid, and Ø stands for any bulky hydrophobic amino acid) types. To investigate the role of each of these trafficking signals in intracellular localization and viral replication, we constructed a panel of expression plasmids and recombinant viruses in which the signals were rendered nonfunctional by mutagenesis. In transfected cells wild-type gpUL132 was mainly associated with the trans-Golgi network. Consecutive mutation of the trafficking signals resulted in increasing fractions of the protein localized at the cell surface, with gpUL132 mutated in all four trafficking motifs predominantly associated with the plasma membrane. Concomitant with increased surface expression, endocytosis of mutant gpUL132 was reduced, with a gpUL132 expressing all four motifs in mutated form being almost completely impaired in endocytosis. The replication of recombinant viruses harboring mutations in single trafficking motifs was comparable to replication of wild-type virus. In contrast, viruses containing mutations in three or four of the trafficking signals showed pronounced deficits in replication with a reduction of approximately 100-fold. Moreover, recombinant viruses expressing gpUL132 with three or four trafficking motifs mutated failed to incorporate the mutant protein into the virus particle. These results demonstrate a role of endocytosis of an HCMV envelope glycoprotein for incorporation into the virion and optimal virus replication.

2021 ◽  
Vol 12 ◽  
Author(s):  
Giacomo Vezzani ◽  
Diego Amendola ◽  
Dong Yu ◽  
Sumana Chandramouli ◽  
Elisabetta Frigimelica ◽  
...  

Human cytomegalovirus (HCMV) relies in large part upon the viral membrane fusion glycoprotein B and two alternative gH/gL complexes, gH/gL/gO (Trimer) and gH/gL/UL128/UL130/UL131A (Pentamer) to enter into cells. The relative amounts of Trimer and Pentamer vary among HCMV strains and contribute to differences in cell tropism. Although the viral ER resident protein UL148 has been shown to interact with gH to facilitate gO incorporation, the mechanisms that favor the assembly and maturation of one complex over another remain poorly understood. HCMV virions also contain an alternative non-disulfide bound heterodimer comprised of gH and UL116 whose function remains unknown. Here, we show that disruption of HCMV gene UL116 causes infectivity defects of ∼10-fold relative to wild-type virus and leads to reduced expression of both gH/gL complexes in virions. Furthermore, gH that is not covalently bound to other viral glycoproteins, which are readily detected in wild-type HCMV virions, become undetectable in the absence of UL116 suggesting that the gH/UL116 complex is abundant in virions. We find evidence that UL116 and UL148 interact during infection indicating that the two proteins might cooperate to regulate the abundance of HCMV gH complexes. Altogether, these results are consistent with a role of UL116 as a chaperone for gH during the assembly and maturation of gH complexes in infected cells.


2000 ◽  
Vol 74 (19) ◽  
pp. 9333-9337 ◽  
Author(s):  
Kirsten Lofgren White ◽  
Barry Slobedman ◽  
Edward S. Mocarski

ABSTRACT Human cytomegalovirus latency in bone marrow-derived myeloid progenitors is characterized by the presence of latency-associated transcripts encoded in the ie1/ie2 region of the viral genome. To assess the role of ORF94 (UL126a), a conserved open reading frame on these transcripts, a recombinant virus (RC2710) unable to express this gene was constructed. This virus replicated at wild-type levels and expressed productive as well as latency-associatedie1/ie2 region transcripts. During latency in granulocyte-macrophage progenitors, RC2710 DNA was detected at levels indistinguishable from wild-type virus, latent-phase transcription was present, and RC2710 reactivated when latently infected cells were cocultured with permissive fibroblasts. These data suggest pORF94 is not required for either productive or latent infection as assayed in cultured cells despite being the only known nuclear latency-associated protein.


2020 ◽  
Author(s):  
Giacomo Vezzani ◽  
Diego Amendola ◽  
Dong Yu ◽  
Sumana Chandramuli ◽  
Elisabetta Frigimelica ◽  
...  

ABSTRACTHuman cytomegalovirus (HCMV) relies in large part upon the viral membrane fusion glycoprotein B (gB) and two alternative gH/gL complexes, gH/gL/gO (Trimer) and the gH/gL/UL128/UL130/UL131A (Pentamer) to enter into cells. The relative amounts of the Trimer and Pentamer vary among HCMV strains and contribute to differences in cell tropism. Although the viral ER resident protein UL148 has been shown to interact with gH to facilitate gO incorporation, the mechanisms that favor the assembly and maturation of one complex over another remain poorly understood. HCMV virions also contain an alternative non-disulfide bound heterodimer comprised of gH and UL116 whose function remains unknown. Here, we show that disruption of HCMV gene UL116 causes infectivity defects of ~10-fold relative to wild-type virus and leads to reduced expression of both gH/gL complexes in virions. Furthermore, gH that is not covalently bound to other viral glycoproteins, which are readily detected in wild-type HCMV virions, become undetectable in the absence of UL116 suggesting that the gH/UL116 complex is abundant in virions. We find evidence that UL116 and UL148 interact during infection indicating that the two proteins might cooperate to regulate the abundance of HCMV gH complexes. Altogether, these results are consistent with a role of UL116 as a chaperone for gH during the assembly and maturation of gH complexes in infected cells.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1913-1920 ◽  
Author(s):  
M Ugorski ◽  
DP Blackall ◽  
P Pahlsson ◽  
SH Shakin-Eshleman ◽  
J Moore ◽  
...  

Abstract Glycophorin A is a heavily glycosylated glycoprotein (1 N-linked and 15 O-linked oligosaccharides) and is highly expressed on the surface of human red blood cells. It is important in transfusion medicine because it carries several clinically relevant human blood group antigens. To study further the role of glycosylation in surface expression of this protein, four mutations were separately introduced into glycophorin A cDNA by site-directed mutagenesis. Each of these mutations blocks N- linked glycosylation at Asn26 of this glycoprotein by affecting the Asn- X-Ser/Thr acceptor sequence. Two of these mutations are identical to the amino acid polymorphisms found at position 28 in the Mi.I and Mi.II Miltenberger blood group antigens. The mutated recombinant glycoproteins were expressed in transfected wild-type and glycosylation- deficient Chinese hamster ovary (CHO) cells. When expressed in wild- type CHO cells and analyzed on Western blots, each of the four mutants had a faster electrophoretic mobility than wild-type glycophorin A, corresponding to a difference of approximately 4 Kd. This change is consistent with the absence of the N-linked oligosaccharide at Asn26. Each of the four mutants was highly expressed on the surface of CHO cells, confirming that, in the presence of normal O-linked glycosylation, the N-linked oligosaccharide is not necessary for cell surface expression of this glycoprotein. To examine the role of O- linked glycosylation in this process, the Mi.I mutant cDNA was transfected into the IdlD glycosylation-deficient CHO cell line. When the transfected IdlD cells were cultured in the presence of N- acetylgalactosamine alone, only intermediate levels of cell surface expression were seen for Mi.I mutant glycophorin A containing truncated O-linked oligosaccharides. In contrast, when cultured in the presence of galactose alone, or in the absence of both galactose and N- acetylgalactosamine, Mi.I mutant glycophorin A lacking both N-linked and O-linked oligosaccharides was not expressed at the cell surface. This extends previous results (Remaley et al, J Biol Chem 266:24176, 1991) showing that, in the absence of O-linked glycosylation, some types of N-linked glycosylation can support cell surface expression of glycophorin A. The glycophorin A mutants were also used for serologic testing with defined human antisera. These studies showed that the recombinant Mi.I and Mi.II glycoproteins appropriately bound anti-Vw and anti-Hut, respectively. They also demonstrated that these antibodies recognized the amino acid polymorphisms encoded by Mi.I and Mi.II rather than cryptic peptide antigens uncovered by the lack of N- linked glycosylation.


1998 ◽  
Vol 72 (12) ◽  
pp. 9575-9584 ◽  
Author(s):  
Philip E. Lashmit ◽  
Mark F. Stinski ◽  
Eain A. Murphy ◽  
Grant C. Bullock

ABSTRACT Human cytomegalovirus has two enhancer-containing immediate-early (IE) promoters with a cis repression sequence (CRS) positioned immediately upstream of the transcription start site, designated the major IE (MIE) promoter and the US3 promoter. The role of the CRS upstream of the US3 transcription start site in the context of the viral genome was determined by comparing the levels of transcription from these two enhancer-containing promoters in recombinant viruses with a wild-type or mutant CRS. Upstream of the CRS of the US3 promoter was either the endogenous enhancer (R2) or silencer (R1). The downstream US3 gene was replaced with the indicator gene chloramphenicol acetyltransferase (CAT). Infected permissive human fibroblast cells or nonpermissive, undifferentiated monocytic THP-1 cells were analyzed for expression from the US3 promoter containing either the wild-type or mutant CRS. With the wild-type CRS, the maximum level of transcription in permissive cells was detected within 4 to 6 h after infection and then declined. With the mutant CRS and the R2 enhancer upstream, expression from the US3 promoter continued to increase throughout the viral replication cycle to levels 20- to 40-fold higher than for the wild type. In nonpermissive or permissive monocytic THP-1 cells, expression from the US3 promoter was also significantly higher when the CRS was mutated. Less expression was obtained when only the R1 element was present, but expression was higher when the CRS was mutated. Thus, the CRS in the enhancer-containing US3 promoter appears to allow for a short burst of US3 gene expression followed by repression at early and late times after infection. Overexpression of US3 may be detrimental to viral replication, and its level of expression must be stringently controlled. The role of the CRS and the viral IE86 protein in controlling enhancer-containing promoters is discussed.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1913-1920 ◽  
Author(s):  
M Ugorski ◽  
DP Blackall ◽  
P Pahlsson ◽  
SH Shakin-Eshleman ◽  
J Moore ◽  
...  

Glycophorin A is a heavily glycosylated glycoprotein (1 N-linked and 15 O-linked oligosaccharides) and is highly expressed on the surface of human red blood cells. It is important in transfusion medicine because it carries several clinically relevant human blood group antigens. To study further the role of glycosylation in surface expression of this protein, four mutations were separately introduced into glycophorin A cDNA by site-directed mutagenesis. Each of these mutations blocks N- linked glycosylation at Asn26 of this glycoprotein by affecting the Asn- X-Ser/Thr acceptor sequence. Two of these mutations are identical to the amino acid polymorphisms found at position 28 in the Mi.I and Mi.II Miltenberger blood group antigens. The mutated recombinant glycoproteins were expressed in transfected wild-type and glycosylation- deficient Chinese hamster ovary (CHO) cells. When expressed in wild- type CHO cells and analyzed on Western blots, each of the four mutants had a faster electrophoretic mobility than wild-type glycophorin A, corresponding to a difference of approximately 4 Kd. This change is consistent with the absence of the N-linked oligosaccharide at Asn26. Each of the four mutants was highly expressed on the surface of CHO cells, confirming that, in the presence of normal O-linked glycosylation, the N-linked oligosaccharide is not necessary for cell surface expression of this glycoprotein. To examine the role of O- linked glycosylation in this process, the Mi.I mutant cDNA was transfected into the IdlD glycosylation-deficient CHO cell line. When the transfected IdlD cells were cultured in the presence of N- acetylgalactosamine alone, only intermediate levels of cell surface expression were seen for Mi.I mutant glycophorin A containing truncated O-linked oligosaccharides. In contrast, when cultured in the presence of galactose alone, or in the absence of both galactose and N- acetylgalactosamine, Mi.I mutant glycophorin A lacking both N-linked and O-linked oligosaccharides was not expressed at the cell surface. This extends previous results (Remaley et al, J Biol Chem 266:24176, 1991) showing that, in the absence of O-linked glycosylation, some types of N-linked glycosylation can support cell surface expression of glycophorin A. The glycophorin A mutants were also used for serologic testing with defined human antisera. These studies showed that the recombinant Mi.I and Mi.II glycoproteins appropriately bound anti-Vw and anti-Hut, respectively. They also demonstrated that these antibodies recognized the amino acid polymorphisms encoded by Mi.I and Mi.II rather than cryptic peptide antigens uncovered by the lack of N- linked glycosylation.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jiyong Su ◽  
Karl Forchhammer

A highly conserved arginine residue is close to the catalytic center of PPM/PP2C-type protein phosphatases. Different crystal structures of PPM/PP2C homologues revealed that the guanidinium side chain of this arginine residue can adopt variable conformations and may bind ligands, suggesting an important role of this residue during catalysis. In this paper, we randomly mutated Arginine 13 of tPphA, a PPM/PP2C-type phosphatase from Thermosynechococcus elongatus, and obtained 18 different amino acid variants. The generated variants were tested towards p-nitrophenyl phosphate and various phosphopeptides. Towards p-nitrophenyl phosphate as substrate, twelve variants showed 3–7 times higher Km values than wild-type tPphA and four variants (R13D, R13F, R13L, and R13W) completely lost activity. Strikingly, these variants were still able to dephosphorylate phosphopeptides, although with strongly reduced activity. The specific inability of some Arg-13 variants to hydrolyze p-nitrophenyl phosphate highlights the importance of additional substrate interactions apart from the substrate phosphate for catalysis. The properties of the R13 variants indicate that this residue assists in substrate binding.


2005 ◽  
Vol 79 (23) ◽  
pp. 14660-14667 ◽  
Author(s):  
Alexandra Dittmer ◽  
John C. Drach ◽  
Leroy B. Townsend ◽  
Anke Fischer ◽  
Elke Bogner

ABSTRACT Herpesvirus DNA replication leads to unit length genomes that are translocated into preformed procapsids through a unique portal vertex. The translocation is performed by the terminase that cleaves the DNA and powers the insertion by its ATPase activity. Recently, we demonstrated that the putative human cytomegalovirus (HCMV) portal protein, pUL104, also forms high-molecular-weight complexes. Analyses now have been performed to determine the intracellular localization and identification of interaction partners of pUL104. In infected cells, HCMV pUL104 was found to be predominantly localized throughout the nucleus as well as in cytoplasmic clusters at late times of infection. The latter localization was abolished by phosphonoacetic acid, an inhibitor of viral DNA replication. Immunofluorescence revealed that pUL104 colocalized with pUL56, the large subunit of the HCMV terminase. Specific association of in vitro translated pUL104 with the carboxy-terminal half of GST-UL56C was detected. By using coimmunoprecipitations a direct interaction with pUL56 was confirmed. In addition, this interaction was no longer detected when the benzimidazole-d-nucleosides BDCRB or Cl4RB were added, thus indicating that these HCMV inhibitors block the insertion of the DNA into the capsid by preventing a necessary interaction of pUL56 with the portal. Electron microscopy revealed that in the presence of Cl4RB DNA is not packaged into capsids and these capsids failed to egress from the nucleus. Furthermore, pulsed-field gel electrophoresis showed that DNA concatemers synthesized in the presence of the compound failed to be processed.


2011 ◽  
Vol 300 (5) ◽  
pp. L781-L789 ◽  
Author(s):  
Szabolcs Bertok ◽  
Michael R. Wilson ◽  
Anthony D. Dorr ◽  
Justina O. Dokpesi ◽  
Kieran P. O'Dea ◽  
...  

TNF plays a crucial role in the pathogenesis of acute lung injury. However, the expression profile of its two receptors, p55 and p75, on pulmonary endothelium and their influence on TNF signaling during lung microvascular inflammation remain uncertain. Using flow cytometry, we characterized the expression profile of TNF receptors on the surface of freshly harvested pulmonary endothelial cells (PECs) from mice and found expression of both receptors with dominance of p55. To investigate the impact of stimulating individual TNF receptors, we treated wild-type and TNF receptor knockout mice with intravenous TNF and determined surface expression of adhesion molecules (E-selectin, VCAM-1, ICAM-1) on PECs by flow cytometry. TNF-induced upregulation of all adhesion molecules was substantially attenuated by absence of p55, whereas lack of p75 had a similar but smaller effect that varied between adhesion molecules. Selective blockade of individual TNF receptors by specific antibodies in wild-type primary PEC culture confirmed that the in vivo findings were due to direct effects of TNF receptor inhibition on endothelium and not other cells (e.g., circulating leukocytes). Finally, we found that PEC surface expression of p55 dramatically decreased in the early stages of endotoxemia following intravenous LPS, while no change in p75 expression was detected. These data demonstrate a crucial in vivo role of p55 and an auxiliary role of p75 in TNF-mediated adhesion molecule upregulation on PECs. It is possible that the importance of the individual receptors varies at different stages of pulmonary microvascular inflammation following changes in their relative expression.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


Sign in / Sign up

Export Citation Format

Share Document