scholarly journals Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection

2021 ◽  
Author(s):  
Pulkit Kanodia ◽  
W. Allen Miller

In recent years, a new class of viral noncoding subgenomic (ncsg)RNA has been identified. This RNA is generated as a stable degradation product via an exoribonuclease-resistant (xr) RNA structure, which blocks the progression of 5’→3’ exoribonuclease on viral RNAs in infected cells. Here, we assess the effects of the ncsgRNA of red clover necrotic mosaic virus (RCNMV), called SR1f, in infected plants. We demonstrate: (i) absence of SR1f reduces symptoms and decreases viral RNA accumulation in Nicotiana benthamiana and Arabidopsis thaliana plants; (ii) SR1f has an essential function other than suppression of RNA silencing; and (iii) the cytoplasmic exoribonuclease involved in mRNA turnover, XRN4, is not required for SR1f production or virus infection. A comparative transcriptomic analysis in N. benthamiana infected with wildtype RCNMV or an SR1f-deficient mutant RCNMV revealed that wt RCNMV infection, which produces SR1f and much higher levels of virus, has a greater and more significant impact on cellular gene expression than the SR1f-deficient mutant. Upregulated pathways include plant hormone signaling, plant-pathogen interaction, MAPK signaling, and several metabolic pathways, while photosynthesis-related genes were downregulated. We compare this to host genes known to participate in infection by other tombusvirids. Viral reads revealed a 10 to 100-fold ratio of positive to negative strand, and the abundance of reads of both strands mapping to the 3’ region of RCNMV RNA1 support the premature mechanism of synthesis for the coding sgRNA. These results provide a framework for future studies of the interactions and functions of noncoding RNAs of plant viruses. IMPORTANCE Knowledge of how RNA viruses manipulate host and viral gene expression is crucial to our understanding of infection and disease. Unlike viral protein-host interactions, little is known about the control of gene expression by viral RNA. Here we begin to address this question by investigating the noncoding subgenomic (ncsg)RNA of red clover necrotic mosaic virus (RCNMV), called SR1f. Similar exoribonuclease-resistant RNAs of flaviviruses are well-studied, but the roles of plant viral ncsgRNAs, and how they arise, are poorly understood. Surprisingly, we find the likely exonuclease candidate, XRN4, is not required to generate SR1f, and we assess the effects of SR1f on virus accumulation and symptom development. Finally, we compare the effects of infection by wildtype RCNMV vs an SR1f-deficient mutant on host gene expression in Nicotiana benthamiana , which reveals that ncsgRNAs such as SR1f are key players in virus-host interactions to facilitate productive infection.

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 232
Author(s):  
Weiran Zheng ◽  
Haichao Hu ◽  
Qisen Lu ◽  
Peng Jin ◽  
Linna Cai ◽  
...  

Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.


2017 ◽  
Vol 30 (8) ◽  
pp. 631-645 ◽  
Author(s):  
Ying Wen Huang ◽  
Chung Chi Hu ◽  
Ching Hsiu Tsai ◽  
Na Sheng Lin ◽  
Yau Heiu Hsu

Plant viruses may exhibit age-dependent tissue preference in their hosts but the underlying mechanisms are not well understood. In this study, we provide several lines of evidence to reveal the determining role of a protein of the Nicotiana benthamiana chloroplast Hsp70 (NbcpHsp70) family, NbcpHsp70-2, involved in the preference of Bamboo mosaic virus (BaMV) to infect older tissues. NbcpHsp70 family proteins were identified in complexes pulled down with BaMV replicase as the bait. Among the isoforms of NbcpHsp70, only the specific silencing of NbcpHsp70-2 resulted in the significant decrease of BaMV RNA in N. benthamiana protopalsts, indicating that NbcpHsp70-2 is involved in the efficient replication of BaMV RNA. We further identified the age-dependent import regulation signal contained in the transit peptide of NbcpHsp70-2. Deletion, overexpression, and substitution experiments revealed that the signal in the transit peptide of NbcpHsp70-2 is crucial for both the import of NbcpHsp70-2 into older chloroplasts and the preference of BaMV for infecting older leaves of N. benthamiana. Together, these data demonstrated that BaMV may exploit a cellular age-dependent transportation mechanism to target a suitable environment for viral replication.


2019 ◽  
Vol 70 (18) ◽  
pp. 4657-4670 ◽  
Author(s):  
Ying-Ping Huang ◽  
Ying-Wen Huang ◽  
Yung-Jen Hsiao ◽  
Siou-Cen Li ◽  
Yau-Huei Hsu ◽  
...  

Abstract Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.


2019 ◽  
Vol 224 (2) ◽  
pp. 804-817 ◽  
Author(s):  
Ying Wen Huang ◽  
Chung Chi Hu ◽  
Ching Hsiu Tsai ◽  
Na Sheng Lin ◽  
Yau Heiu Hsu

2002 ◽  
Vol 129 (3) ◽  
pp. 1032-1044 ◽  
Author(s):  
Andrzej Talarczyk ◽  
Magdalena Krzymowska ◽  
Wojciech Borucki ◽  
Jacek Hennig

Sign in / Sign up

Export Citation Format

Share Document