scholarly journals Prion Type-Dependent Deposition ofPRNPAllelic Products in Heterozygous Sheep

2015 ◽  
Vol 90 (2) ◽  
pp. 805-812 ◽  
Author(s):  
J. P. M. Langeveld ◽  
J. G. Jacobs ◽  
N. Hunter ◽  
L. J. M. van Keulen ◽  
F. Lantier ◽  
...  

ABSTRACTSusceptibility or resistance to prion infection in humans and animals depends on single prion protein (PrP) amino acid substitutions in the host, but the agent's modulating role has not been well investigated. Compared to disease incubation times in wild-type homozygous ARQ/ARQ (where each triplet represents the amino acids at codons 136, 154, and 171, respectively) sheep, scrapie susceptibility is reduced to near resistance in ARR/ARR animals while it is strongly enhanced in VRQ/VRQ carriers. Heterozygous ARR/VRQ animals exhibit delayed incubation periods. In bovine spongiform encephalopathy (BSE) infection, the polymorphism effect is quite different although the ARR allotype remains the least susceptible. In this study, PrP allotype composition in protease-resistant prion protein (PrPres) from brain of heterozygous ARR/VRQ scrapie-infected sheep was compared with that of BSE-infected sheep with a similar genotype. A triplex Western blotting technique was used to estimate the two allotype PrP fractions in PrPresmaterial from BSE-infected ARR/VRQ sheep. PrPresin BSE contained equimolar amounts of VRQ- and ARR-PrP, which contrasts with the excess (>95%) VRQ-PrP fraction found in PrP in scrapie. This is evidence that transmissible spongiform encephalopathy (TSE) agent properties alone, perhaps structural aspects of prions (such as PrP amino acid sequence variants and PrP conformational state), determine the polymorphic dependence of the PrPresaccumulation process in prion formation as well as the disease-associated phenotypic expressions in the host.IMPORTANCETransmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative and transmissible diseases caused by prions. Amino acid sequence variants of the prion protein (PrP) determine transmissibility in the hosts, as has been shown for classical scrapie in sheep. Each individual produces a separate PrP molecule from its two PrP gene copies. Heterozygous scrapie-infected sheep that produce two PrP variants associated with opposite scrapie susceptibilities (136V-PrP variant, high; 171R-PrP variant, very low) contain in their prion material over 95% of the 136V PrP variant. However, when these sheep are infected with prions from cattle (bovine spongiform encephalopathy [BSE]), both PrP variants occur in equal ratios. This shows that the infecting prion type determines the accumulating PrP variant ratio in the heterozygous host. While the host's PrP is considered a determining factor, these results emphasize that prion structure plays a role during host infection and that PrP variant involvement in prions of heterozygous carriers is a critical field for understanding prion formation.

2007 ◽  
Vol 81 (13) ◽  
pp. 7306-7309 ◽  
Author(s):  
Gabriele Vaccari ◽  
Claudia D'Agostino ◽  
Romolo Nonno ◽  
Francesca Rosone ◽  
Michela Conte ◽  
...  

ABSTRACT The susceptibility of sheep to classical scrapie and bovine spongiform encephalopathy (BSE) is mainly influenced by prion protein (PrP) polymorphisms A136V, R154H, and Q171R, with the ARR allele associated with significantly decreased susceptibility. Here we report the protective effect of the amino acid substitution M137T, I142K, or N176K on the ARQ allele in sheep experimentally challenged with either scrapie or BSE. Such observations suggest the existence of additional PrP alleles that significantly decrease the susceptibility of sheep to transmissible spongiform encephalopathies, which may have important implications for disease eradication strategies.


2012 ◽  
Vol 93 (7) ◽  
pp. 1624-1629 ◽  
Author(s):  
Rona Wilson ◽  
Chris Plinston ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Cristiano Corona ◽  
...  

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


2006 ◽  
Vol 87 (12) ◽  
pp. 3763-3771 ◽  
Author(s):  
C. Cordier ◽  
A. Bencsik ◽  
S. Philippe ◽  
D. Bétemps ◽  
F. Ronzon ◽  
...  

Transgenic mice expressing the prion protein (PrP) of species affected by transmissible spongiform encephalopathies (TSEs) have recently been produced to facilitate experimental transmission of these diseases by comparison with wild-type mice. However, whilst wild-type mice have largely been described for the discrimination of different TSE strains, including differentiation of agents involved in bovine spongiform encephalopathy (BSE) and scrapie, this has been only poorly described in transgenic mice. Here, two ovine transgenic mouse lines (TgOvPrP4 and TgOvPrP59), expressing the ovine PrP (A136 R154 Q171) under control of the neuron-specific enolase promoter, were studied; they were challenged with brainstem or spinal cord from experimentally BSE-infected sheep (AA136 RR154 QQ171 and AA136 RR154 RR171 genotypes) or brainstem from cattle BSE and natural sheep scrapie. The disease was transmitted successfully from all of these sources, with a mean of approximately 300 days survival following challenge with material from two ARQ-homozygous BSE-infected sheep in TgOvPrP4 mice, whereas the survival period in mice challenged with material from the ARR-homozygous BSE-infected sheep was 423 days on average. It was shown that, in the two ovine transgenic mouse lines, the Western blot characteristics of protease-resistant PrP (PrPres) were similar, whatever the BSE source, with a low apparent molecular mass of the unglycosylated glycoform, a poor labelling by P4 monoclonal antibody and high proportions of the diglycosylated form. With all BSE sources, but not with scrapie, florid plaques were observed in the brains of mice from both transgenic lines. These data reinforce the potential of this recently developed experimental model for the discrimination of BSE from scrapie agents.


2005 ◽  
Vol 53 (10) ◽  
pp. 1199-1202 ◽  
Author(s):  
Anna A. Bencsik ◽  
Sabine O.S. Debeer ◽  
Thierry G.M. Baron

Because of its sensitivity, immunohistochemistry (IHC) of abnormal prion protein (PrPsc) is used more often in the diagnosis of transmissible spongiform encephalopathies (TSEs), such as scrapie and bovine spongiform encephalopathy (BSE). PrPsc IHC requires a combination of pretreatments (chemical, heating, and enzymatic). The method of application may depend on the anti-prion antibody considered. If these pretreatments are efficient for diagnostic purpose, it may, however, be interesting to use an alternative method to efficiently detect PrPsc IHC immunohistochemically using chemical pretreatments solely. Here we describe such pretreatments reporting the difficulty (section adhesion) but also the potential advantages of such methods (easy, quick, inexpensive, and amplifying effect).


2003 ◽  
Vol 77 (3) ◽  
pp. 2003-2009 ◽  
Author(s):  
Ina Vorberg ◽  
Martin H. Groschup ◽  
Eberhard Pfaff ◽  
Suzette A. Priola

ABSTRACT Transmissible spongiform encephalopathies (TSEs) are neurological diseases that are associated with the conversion of the normal host-encoded prion protein (PrP-sen) to an abnormal protease-resistant form, PrP-res. Transmission of the TSE agent from one species to another is usually inefficient and accompanied by a prolonged incubation time. Species barriers to infection by the TSE agent are of particular importance given the apparent transmission of bovine spongiform encephalopathy to humans. Among the few animal species that appear to be resistant to infection by the TSE agent are rabbits. They survive challenge with the human kuru and Creutzfeldt-Jakob agents as well as with scrapie agent isolated from sheep or mice. Species barriers to the TSE agent are strongly influenced by the PrP amino acid sequence of both the donor and recipient animals. Here we show that rabbit PrP-sen does not form PrP-res in murine tissue culture cells persistently infected with the mouse-adapted scrapie agent. Unlike other TSE species barriers that have been studied, critical amino acid residues that inhibit PrP-res formation are located throughout the rabbit PrP sequence. Our results suggest that the resistance of rabbits to infection by the TSE agent is due to multiple rabbit PrP-specific amino acid residues that result in a PrP structure that is unable to refold to the abnormal isoform associated with disease.


2017 ◽  
Vol 91 (24) ◽  
Author(s):  
Hasier Eraña ◽  
Natalia Fernández-Borges ◽  
Saioa R. Elezgarai ◽  
Chafik Harrathi ◽  
Jorge M. Charco ◽  
...  

ABSTRACT Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc. Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP. IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.


2006 ◽  
Vol 80 (10) ◽  
pp. 4656-4663 ◽  
Author(s):  
Catherine Rybner-Barnier ◽  
Catherine Jacquemot ◽  
Céline Cuche ◽  
Grégory Doré ◽  
Laleh Majlessi ◽  
...  

ABSTRACT Dendritic cells (DC) are suspected to be involved in transmissible spongiform encephalopathies, including bovine spongiform encephalopathy (BSE). We detected the disease-specific, protease-resistant prion protein (PrPbse) in splenic DC purified by magnetic cell sorting 45 days after intraperitoneal inoculation of BSE prions in immunocompetent mice. We showed that bone marrow-derived DC (BMDC) from wild-type or PrP-null mice acquired both PrPbse and prion infectivity within 2 h of in vitro culture with a BSE inoculum. BMDC cleared PrPbse within 2 to 3 days of culture, while BMDC infectivity was only 10-fold diminished between days 1 and 6 of culture, suggesting that the infectious unit in BMDC is not removed at the same rate as PrPbse is removed from these cells. Bone marrow-derived plasmacytoid DC and bone marrow-derived macrophages (BMM) also acquired and degraded PrPbse when incubated with a BSE inoculum, with kinetics very similar to those of BMDC. PrPbse capture is probably specific to antigen-presenting cells since no uptake of PrPbse was observed when splenic B or T lymphocytes were incubated with a BSE inoculum in vitro. Lipopolysaccharide activation of BMDC or BMM prior to BSE infection resulted in an accelerated breakdown of PrPbse. Injected by the intraperitoneal route, BMDC were not infectious for alymphoid recombination-activated gene 20/common cytokine γ chain-deficient mice, suggesting that these cells are not capable of directly propagating BSE infectivity to nerve endings.


2013 ◽  
Vol 94 (12) ◽  
pp. 2819-2827 ◽  
Author(s):  
Rona Wilson ◽  
Karen Dobie ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Thierry Baron ◽  
...  

The transmission of bovine spongiform encephalopathy (BSE) to humans, leading to variant Creutzfeldt–Jakob disease has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health. Until recently, TSE disease in cattle was thought to be caused by a single agent strain, BSE, also known as classical BSE, or BSE-C. However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. To model the risk to human health, we previously inoculated these two forms of atypical BSE (BASE and BSE-H) into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP) (HuTg) but were unable to detect any signs of TSE pathology in these mice. However, despite the absence of TSE pathology, upon subpassage of some BASE-challenged HuTg mice, a TSE was observed in recipient gene-targeted bovine PrP Tg (Bov6) mice but not in HuTg mice. Disease transmission from apparently healthy individuals indicates the presence of subclinical BASE infection in mice expressing human PrP that cannot be identified by current diagnostic methods. However, due to the lack of transmission to HuTg mice on subpassage, the efficiency of mouse-to-mouse transmission of BASE appears to be low when mice express human rather than bovine PrP.


2001 ◽  
Vol 75 (10) ◽  
pp. 4673-4680 ◽  
Author(s):  
Suzette A. Priola ◽  
Joëlle Chabry ◽  
Kaman Chan

ABSTRACT In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.


1996 ◽  
Vol 17 (8) ◽  
pp. 521-528
Author(s):  
Dominique Dormont

AbstractTransmissible spongiform encephalopathies are rare lethal diseases induced in humans and animals by unconventional agents called transmissible spongiform encephalopathy agents (TSEAs), virions, or prions. Several cases of iatrogenic Creutzfeldt-Jakob disease (CJD) have been reported in the literature after neuro-surgery, treatment with pituitary-derived hormones, corneal grafting, and use of dura mater lyophilisates. In a given infected individual, TSEA-associated infectiousness depends on the nature of the organ: the central nervous system has the highest infectiousness, spleen and lymph nodes a medium infectiousness, and organs such as bone, skin, or skeletal muscles do not harbor any detectable infectiousness in experimental models. Transmissible spongiform encephalopathy/prions have unconventional properties; in particular, they resist almost all the chemical and physical processes that inactivate conventional viruses. Therefore, prevention of CJD agent transmission must be taken into account in daily hospital practice. Efficient sterilization procedures should be determined. In tissue and blood donation, donors with a neurologic history must be excluded, and patients treated with pituitary-derived hormones should be considered potentially infected with TSEA and excluded.


Sign in / Sign up

Export Citation Format

Share Document