scholarly journals Multiple Amino Acid Residues within the Rabbit Prion Protein Inhibit Formation of Its Abnormal Isoform

2003 ◽  
Vol 77 (3) ◽  
pp. 2003-2009 ◽  
Author(s):  
Ina Vorberg ◽  
Martin H. Groschup ◽  
Eberhard Pfaff ◽  
Suzette A. Priola

ABSTRACT Transmissible spongiform encephalopathies (TSEs) are neurological diseases that are associated with the conversion of the normal host-encoded prion protein (PrP-sen) to an abnormal protease-resistant form, PrP-res. Transmission of the TSE agent from one species to another is usually inefficient and accompanied by a prolonged incubation time. Species barriers to infection by the TSE agent are of particular importance given the apparent transmission of bovine spongiform encephalopathy to humans. Among the few animal species that appear to be resistant to infection by the TSE agent are rabbits. They survive challenge with the human kuru and Creutzfeldt-Jakob agents as well as with scrapie agent isolated from sheep or mice. Species barriers to the TSE agent are strongly influenced by the PrP amino acid sequence of both the donor and recipient animals. Here we show that rabbit PrP-sen does not form PrP-res in murine tissue culture cells persistently infected with the mouse-adapted scrapie agent. Unlike other TSE species barriers that have been studied, critical amino acid residues that inhibit PrP-res formation are located throughout the rabbit PrP sequence. Our results suggest that the resistance of rabbits to infection by the TSE agent is due to multiple rabbit PrP-specific amino acid residues that result in a PrP structure that is unable to refold to the abnormal isoform associated with disease.

2015 ◽  
Vol 90 (2) ◽  
pp. 805-812 ◽  
Author(s):  
J. P. M. Langeveld ◽  
J. G. Jacobs ◽  
N. Hunter ◽  
L. J. M. van Keulen ◽  
F. Lantier ◽  
...  

ABSTRACTSusceptibility or resistance to prion infection in humans and animals depends on single prion protein (PrP) amino acid substitutions in the host, but the agent's modulating role has not been well investigated. Compared to disease incubation times in wild-type homozygous ARQ/ARQ (where each triplet represents the amino acids at codons 136, 154, and 171, respectively) sheep, scrapie susceptibility is reduced to near resistance in ARR/ARR animals while it is strongly enhanced in VRQ/VRQ carriers. Heterozygous ARR/VRQ animals exhibit delayed incubation periods. In bovine spongiform encephalopathy (BSE) infection, the polymorphism effect is quite different although the ARR allotype remains the least susceptible. In this study, PrP allotype composition in protease-resistant prion protein (PrPres) from brain of heterozygous ARR/VRQ scrapie-infected sheep was compared with that of BSE-infected sheep with a similar genotype. A triplex Western blotting technique was used to estimate the two allotype PrP fractions in PrPresmaterial from BSE-infected ARR/VRQ sheep. PrPresin BSE contained equimolar amounts of VRQ- and ARR-PrP, which contrasts with the excess (>95%) VRQ-PrP fraction found in PrP in scrapie. This is evidence that transmissible spongiform encephalopathy (TSE) agent properties alone, perhaps structural aspects of prions (such as PrP amino acid sequence variants and PrP conformational state), determine the polymorphic dependence of the PrPresaccumulation process in prion formation as well as the disease-associated phenotypic expressions in the host.IMPORTANCETransmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative and transmissible diseases caused by prions. Amino acid sequence variants of the prion protein (PrP) determine transmissibility in the hosts, as has been shown for classical scrapie in sheep. Each individual produces a separate PrP molecule from its two PrP gene copies. Heterozygous scrapie-infected sheep that produce two PrP variants associated with opposite scrapie susceptibilities (136V-PrP variant, high; 171R-PrP variant, very low) contain in their prion material over 95% of the 136V PrP variant. However, when these sheep are infected with prions from cattle (bovine spongiform encephalopathy [BSE]), both PrP variants occur in equal ratios. This shows that the infecting prion type determines the accumulating PrP variant ratio in the heterozygous host. While the host's PrP is considered a determining factor, these results emphasize that prion structure plays a role during host infection and that PrP variant involvement in prions of heterozygous carriers is a critical field for understanding prion formation.


2017 ◽  
Vol 91 (24) ◽  
Author(s):  
Hasier Eraña ◽  
Natalia Fernández-Borges ◽  
Saioa R. Elezgarai ◽  
Chafik Harrathi ◽  
Jorge M. Charco ◽  
...  

ABSTRACT Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc. Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP. IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.


2007 ◽  
Vol 81 (13) ◽  
pp. 7306-7309 ◽  
Author(s):  
Gabriele Vaccari ◽  
Claudia D'Agostino ◽  
Romolo Nonno ◽  
Francesca Rosone ◽  
Michela Conte ◽  
...  

ABSTRACT The susceptibility of sheep to classical scrapie and bovine spongiform encephalopathy (BSE) is mainly influenced by prion protein (PrP) polymorphisms A136V, R154H, and Q171R, with the ARR allele associated with significantly decreased susceptibility. Here we report the protective effect of the amino acid substitution M137T, I142K, or N176K on the ARQ allele in sheep experimentally challenged with either scrapie or BSE. Such observations suggest the existence of additional PrP alleles that significantly decrease the susceptibility of sheep to transmissible spongiform encephalopathies, which may have important implications for disease eradication strategies.


2001 ◽  
Vol 75 (10) ◽  
pp. 4673-4680 ◽  
Author(s):  
Suzette A. Priola ◽  
Joëlle Chabry ◽  
Kaman Chan

ABSTRACT In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Byung-Hoon Jeong

Abstract Prion diseases in sheep and goats are called scrapie and belong to a group of transmissible spongiform encephalopathies (TSEs) caused by the abnormal misfolding of the prion protein encoded by the prion protein gene (PRNP). The shadow of the prion protein gene (SPRN) is the only prion gene family member that shows a protein expression profile similar to that of the PRNP gene in the central nervous system. In addition, genetic susceptibility of the SPRN gene has been reported in variant Creutzfeldt–Jakob disease (CJD), bovine spongiform encephalopathy (BSE) and scrapie. However, genetic studies of the SPRN gene have not been carried out in Korean native black goats. Here, we investigated the genotype and allele frequencies of SPRN polymorphisms in 213 Korean native black goats and compared these polymorphisms with those previously reported for scrapie-affected animals. We found a total of 6 polymorphisms including 1 nonsynonymous single nucleotide polymorphism (SNP) and 1 synonymous SNP in the open reading frame (ORF) region and 3 SNPs and 1 indel polymorphism (c.495_496insCTCCC) in the 3′ untranslated region (UTR) by direct DNA sequencing. A significant difference in the allele frequency of the c.495_496insCTCCC indel polymorphism was found between the Italian scrapie-affected goats and the Korean native black goats (P < 0.001). Furthermore, there was a significant difference in the allele frequencies of the c.495_496insCTCCC indel polymorphism between Italian healthy goats and Korean native black goats (P < 0.001). To evaluate the biological impact of the novel nonsynonymous SNP c.416G > A (Arg139Gln), we carried out PROVEAN analysis. PROVEAN predicted the SNP as ‘Neutral’ with a score of −0.297. To the best of our knowledge, this is the first genetic study of the SPRN gene in Korean native black goats.


2004 ◽  
Vol 78 (3) ◽  
pp. 1281-1288 ◽  
Author(s):  
Ikuko Murakami-Kubo ◽  
Katsumi Doh-ura ◽  
Kensuke Ishikawa ◽  
Satoshi Kawatake ◽  
Kensuke Sasaki ◽  
...  

ABSTRACT We previously reported that quinacrine inhibited the formation of an abnormal prion protein (PrPres), a key molecule in the pathogenesis of transmissible spongiform encephalopathy, or prion disease, in scrapie-infected neuroblastoma cells. To elucidate the structural aspects of its inhibiting action, various chemicals with a quinoline ring were screened in the present study. Assays of the scrapie-infected neuroblastoma cells revealed that chemicals with a side chain containing a quinuclidine ring at the 4 position of a quinoline ring (represented by quinine) inhibited the PrPres formation at a 50% inhibitory dose ranging from 10−1 to 101 μM. On the other hand, chemicals with a side chain at the 2 position of a quinoline ring (represented by 2,2′-biquinoline) more effectively inhibited the PrPres formation at a 50% inhibitory dose ranging from 10−3 to 10−1 μM. A metabolic labeling study revealed that the action of quinine or biquinoline was not due to any alteration in the biosynthesis or turnover of normal prion protein, whereas surface plasmon resonance analysis showed a strong binding affinity of biquinoline with a recombinant prion protein. In vivo studies revealed that 4-week intraventricular infusion of quinine or biquinoline was effective in prolonging the incubation period in experimental mouse models of intracerebral infection. The findings suggest that quinoline derivatives with a nitrogen-containing side chain have the potential of both inhibiting PrPres formation in vitro and prolonging the incubation period of infected animals. These chemicals are new candidates for therapeutic drugs for use in the treatment of transmissible spongiform encephalopathies.


2006 ◽  
Vol 20 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Gwynivere A Davies ◽  
Adam R Bryant ◽  
John D Reynolds ◽  
Frank R Jirik ◽  
Keith A Sharkey

The gastrointestinal (GI) tract plays a central role in the pathogenesis of transmissible spongiform encephalopathies. These are human and animal diseases that include bovine spongiform encephalopathy, scrapie and Creutzfeldt-Jakob disease. They are uniformly fatal neurological diseases, which are characterized by ataxia and vacuolation in the central nervous system. Alhough they are known to be caused by the conversion of normal cellular prion protein to its infectious conformational isoform (PrPsc) the process by which this isoform is propagated and transported to the brain remains poorly understood. M cells, dendritic cells and possibly enteroendocrine cells are important in the movement of infectious prions across the GI epithelium. From there, PrPscpropagation requires B lymphocytes, dendritic cells and follicular dendritic cells of Peyer’s patches. The early accumulation of the disease-causing agent in the plexuses of the enteric nervous system supports the contention that the autonomic nervous system is important in disease transmission. This is further supported by the presence of PrPscin the ganglia of the parasympathetic and sympathetic nerves that innervate the GI tract. Additionally, the lymphoreticular system has been implicated as the route of transmission from the gut to the brain. Although normal cellular prion protein is found in the enteric nervous system, its role has not been characterized. Further research is required to understand how the cellular components of the gut wall interact to propagate and transmit infectious prions to develop potential therapies that may prevent the progression of transmissible spongiform encephalopathies.


2012 ◽  
Vol 93 (7) ◽  
pp. 1624-1629 ◽  
Author(s):  
Rona Wilson ◽  
Chris Plinston ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Cristiano Corona ◽  
...  

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


2000 ◽  
Vol 63 (11) ◽  
pp. 1602-1609 ◽  
Author(s):  
DRAGAN MOMCILOVIC ◽  
AVRAHAM RASOOLY

Bovine spongiform encephalopathy (BSE) belongs to a group of progressively degenerative neurological diseases known as transmissible spongiform encephalopathies (TSEs) associated with a variant form of Creutzfeldt-Jakob disease in humans. TSEs are fatal diseases caused by prions (proteinaceous infectious particle) and are characterized by an incubation period that may range from several months to several years, depending on the host. Because BSE is spread through animal feed, the main strategy for preventing the establishment and spread of BSE is to prohibit the use of proteins derived from mammalian tissue in feed for ruminant animals. Enforcement of these regulations relies on the ability to identify the presence of prohibited proteins in ruminant feed. The methods to detect bovine products in rendered and cooked materials are based on analyses of DNA, bone, or protein. In this article, we discuss the current methodology as well as other potentially useful methods of analysis of animal material in food. While methods are generally useful, none specifically distinguish between prohibited bovine material and allowable bovine products, such as milk or blood. Furthermore, all these methods are hampered by the fact that the rendering process involves heat treatment that denatures and degrades proteins and DNA. There is a need for improving existing methods and developing new methods to overcome these two limitations.


2004 ◽  
Vol 76 (5) ◽  
pp. 915-920 ◽  
Author(s):  
P. P. Liberski

Transmissible spongiform encephalopathies (TSEs), currently known as prion diseases, are neurodegenerative disorders of the central nervous system (CNS) caused by an elusive infectious agent called “prion” (proteinaceous infectious particle). These dis orders include: kuru, Creutzfeldt –Jakob disease (CJD) and its variant (vCJD), Gerstmann–Sträussler–Scheinker (GSS) disease and fatal familial insomnia (FFI) in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, and chronic wasting disease (CWD) in cervids. According to the widely accepted “prion hypothesis”, prion is an aggregate of the abnormal isoform of prion protein (PrPSc). Prion protein is a cell-derived glycoprotein (this normal isoform is called PrPc) encoded by a gene on chromosome 20 in humans (PRNP). In familial forms of TSEs, mutations within the ORF of PRNP are linked to the phenotypic expression of the disease. TSEs are important from public health perspective, and “mad cow disease has created the greatest threat to the safety of human food supply in modern times. vCJD threatens the safety of the blood supply worldwide”. Thus, to search for effective therapy is more than an urgent task. In TSEs, aggregates of PrPSc accumulate in the brain in a form of plaques, or synaptic deposits. The conversion of PrPc into PrPSc and subsequent deposits of PrPSc are targets for therapeutic interventions. These include: tricyclic compounds—acridine and phenothiazine derivatives; quinacrine; anti-PrPSc antibodies; dendrimers; polyethylene antibiotics (amphotericin B, MS-8209); pentosan polysulfate; and dextran sulfate. All these compounds are active in many in vitro and in vivo assays, but not proved definitely active in humans. Thus, albeit interesting and promising, the chemotherapy of TSEs is still in the infant phase.


Sign in / Sign up

Export Citation Format

Share Document