scholarly journals tRNA Isoacceptor Preference prior to Retrovirus Gag-Pol Junction Links Primer Selection and Viral Translation

2007 ◽  
Vol 81 (9) ◽  
pp. 4397-4404 ◽  
Author(s):  
Matthew T. Palmer ◽  
Richard Kirkman ◽  
Barry R. Kosloff ◽  
Peter G. Eipers ◽  
Casey D. Morrow

ABSTRACT An essential step in the replication of all retroviruses is the capture of a cellular tRNA that is used as the primer for reverse transcription. The 3′-terminal 18 nucleotides of the tRNA are complementary to the primer binding site (PBS). Moloney murine leukemia virus (MuLV) preferentially captures tRNAPro. To investigate the specificity of primer selection, the PBS of MuLV was altered to be complementary to different tRNAs. Analysis of the infectivity of the virus and stability of the PBS following in vitro replication revealed that MuLV prefers to select tRNAPro, tRNAGly, or tRNAArg. Previous studies from our laboratory have suggested that tRNA primer capture is coordinated with translation. Coincidentally, a cluster of proline, arginine, and glycine precedes the Gag-Pol junction of MuLV. Human immunodeficiency virus type 1 (HIV-1), which prefers \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{3}^{\mathrm{Lys}}\) \end{document} as the primer, can be forced to utilize tRNAMet, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{1,2}^{\mathrm{Lys}}\) \end{document} , tRNAHis, or tRNAGlu, although these viruses replicate poorly. Codons for methionine, lysine, histidine, or glutamic acid are found prior to the Gag-Pol frameshift site. HIV-1 was mutated so that the 5 lysine codons prior to the Gag-Pol frameshift region were specific for \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{1,2}^{\mathrm{Lys}}\) \end{document} . HIV-1 forced to use \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{1,2}^{\mathrm{Lys}}\) \end{document} as the primer, with the mutation of codons specific for \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{1,2}^{\mathrm{Lys}}\) \end{document} prior to the Gag-Pol junction, had enhanced infectivity and replicated similarly to the wild-type virus. The results demonstrate that codon preference prior to the Gag-Pol junction influences primer selection and suggest a coordination of Gag-Pol synthesis and acquisition of the tRNA primer required for retrovirus replication.

1987 ◽  
Vol 7 (10) ◽  
pp. 3775-3784
Author(s):  
T P Loh ◽  
L L Sievert ◽  
R W Scott

Embryonal carcinoma (EC) cells are nonpermissive for retrovirus replication. Restriction of retroviral expression in EC cells was studied by using DNA transfection techniques. To investigate the activity of the Moloney murine leukemia virus (M-MuLV)enhancer and promoter sequences, the M-MuLV long terminal repeat and the defined long terminal repeat deletions were linked to neo structural gene sequences that encode resistance to the neomycin analog G418. Transient expression data and drug resistance frequencies support the findings that the M-MuLV enhancer is not active in EC cells but that promoter sequences are functional. In addition, a proviral DNA fragment that encodes the leader RNA sequence of a M-MuLV recombinant retrovirus was found to restrict expression specifically in EC cells. Deletion analysis of the leader fragment localized the inhibitory sequences to a region that spans the M-MuLV tRNA primer binding site. It is not known whether restriction occurs at a transcriptional or posttranscriptional level, but steady-state RNA levels in transient expression assays were significantly reduced.


2003 ◽  
Vol 77 (16) ◽  
pp. 8695-8701 ◽  
Author(s):  
Nathan J. Kelly ◽  
Matthew T. Palmer ◽  
Casey D. Morrow

ABSTRACT Initiation of retrovirus reverse transcription requires the selection of a tRNA primer from the intracellular milieu. To investigate the features of primer selection, a human immunodeficiency virus type 1 (HIV-1) and a murine leukemia virus (MuLV) were created that require yeast tRNAPhe to be supplied in trans for infectivity. Wild-type yeast tRNAPhe expressed in mammalian cells was transported to the cytoplasm and aminoacylated. In contrast, tRNAPhe without the D loop (tRNAPheD−) was retained within the nucleus and did not complement infectivity of either HIV-1 or MuLV; however, infectivity was restored when tRNAPheD− was directly transfected into the cytoplasm of cells. A tRNAPhe mutant (tRNAPheUUA) that did not have the capacity to be aminoacylated was transported to the cytoplasm and did complement infectivity of both HIV-1 and MuLV, albeit at a level less than that with wild-type tRNAPhe. Collectively, our results demonstrate that the tRNA primer captured by HIV-1 and MuLV occurs after nuclear export of tRNA and supports a model in which primer selection for retroviruses is coordinated with tRNA biogenesis at the intracellular site of protein synthesis.


2000 ◽  
Vol 74 (23) ◽  
pp. 10965-10974 ◽  
Author(s):  
Ling Li ◽  
Kristine Yoder ◽  
Mark S. T. Hansen ◽  
Jennifer Olvera ◽  
Michael D. Miller ◽  
...  

ABSTRACT To replicate, a retrovirus must synthesize a cDNA copy of the viral RNA genome and integrate that cDNA into a chromosome of the host. We have investigated the role of a host cell cofactor, HMG I(Y) protein, in integration of human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) cDNA. Previously we reported that HMG I(Y) cofractionates with HIV-1 preintegration complexes (PICs) isolated from freshly infected cells. PICs depleted of required components by treatment with high concentrations of salt could be reconstituted by addition of purified HMG I(Y) in vitro. Here we report studies using immunoprecipitation that indicate that HMG I(Y) is associated with MoMLV preintegration complexes. In mechanistic studies, we show for both HIV-1 and MoMLV that each HMG I(Y) monomer must contain multiple DNA binding domains to stimulate integration by HMG I(Y)-depleted PICs. We also find that HMG I(Y) can condense model HIV-1 or MoMLV cDNA in vitro as measured by stimulation of intermolecular ligation. This reaction, like reconstitution of integration, depends on the presence of multiple DNA binding domains in each HMG I(Y) monomer. These data suggest that binding of multivalent HMG I(Y) monomers to multiple cDNA sites compacts retroviral cDNA, thereby promoting formation of active integrase-cDNA complexes.


1987 ◽  
Vol 7 (10) ◽  
pp. 3775-3784 ◽  
Author(s):  
T P Loh ◽  
L L Sievert ◽  
R W Scott

Embryonal carcinoma (EC) cells are nonpermissive for retrovirus replication. Restriction of retroviral expression in EC cells was studied by using DNA transfection techniques. To investigate the activity of the Moloney murine leukemia virus (M-MuLV)enhancer and promoter sequences, the M-MuLV long terminal repeat and the defined long terminal repeat deletions were linked to neo structural gene sequences that encode resistance to the neomycin analog G418. Transient expression data and drug resistance frequencies support the findings that the M-MuLV enhancer is not active in EC cells but that promoter sequences are functional. In addition, a proviral DNA fragment that encodes the leader RNA sequence of a M-MuLV recombinant retrovirus was found to restrict expression specifically in EC cells. Deletion analysis of the leader fragment localized the inhibitory sequences to a region that spans the M-MuLV tRNA primer binding site. It is not known whether restriction occurs at a transcriptional or posttranscriptional level, but steady-state RNA levels in transient expression assays were significantly reduced.


2003 ◽  
Vol 77 (24) ◽  
pp. 13084-13092 ◽  
Author(s):  
Malini Mansharamani ◽  
David R. M. Graham ◽  
Daphne Monie ◽  
Kenneth K. Lee ◽  
James E. K. Hildreth ◽  
...  

ABSTRACT Barrier-to-autointegration factor (BAF) is a conserved human chromatin protein exploited by retroviruses. Previous investigators showed that BAF binds double-stranded DNA nonspecifically and is a host component of preintegration complexes (PICs) isolated from cells infected with human immunodeficiency virus type 1 (HIV-1) or Moloney murine leukemia virus. BAF protects PIC structure and stimulates the integration of salt-stripped PICs into target DNA in vitro. PICs are thought to acquire BAF from the cytoplasm during infection. However, we identified two human tissues (of 16 tested) in which BAF mRNA was not detected: thymus and peripheral blood leukocytes, which are enriched in CD4+ T lymphocytes and macrophage precursors, respectively. BAF protein was detected in activated but not resting CD4+ T lymphocytes; thus, if BAF were essential for PIC function, we hypothesized that virions might “bring their own BAF.” Supporting this model, BAF copurified with HIV-1 virions that were digested with subtilisin to remove microvesicle contaminants, and BAF was present in approximately zero to three copies per virion. In three independent assays, BAF bound directly to both p55 Gag (the structural precursor of HIV-1 virions) and its cleaved product, matrix. Using lysates from cells overexpressing Gag, endogenous BAF and Gag were coimmunoprecipitated by antibodies against Gag. Purified recombinant BAF had low micromolar affinities (1.1 to 1.4μ M) for recombinant Gag and matrix. We conclude that BAF is present at low levels in incoming virions, in addition to being acquired from the cytoplasm of newly infected cells. We further conclude that BAF might contribute to the assembly or activity of HIV-1 PICs through direct binding to matrix, as well as DNA.


1998 ◽  
Vol 72 (3) ◽  
pp. 2125-2131 ◽  
Author(s):  
Ling Li ◽  
Chris M. Farnet ◽  
W. French Anderson ◽  
Frederic D. Bushman

ABSTRACT We have explored the requirements for host proteins in the integration of Moloney murine leukemia virus (MoMuLV) cDNA in vitro. Following infection, it is possible to lyse cells and obtain preintegration complexes (PICs) capable of integrating the MoMuLV cDNA into an added target DNA in vitro (intermolecular integration). PICs can be stripped of required proteins by gel filtration in high-salt buffers (600 mM KCl), allowing the nature of the removed factors to be investigated by in vitro reconstitution. In a previous study of human immunodeficiency virus type 1 (HIV-1) PICs, the host protein HMG I(Y) was found to be able to restore activity to salt-stripped PICs. In contrast, salt stripping and reconstitution of MoMuLV PICs led to the proposal that a host factor is important for a different activity, blocking integration into the cDNA itself (autointegration). In this report, we investigated reconstitution of salt-stripped MoMuLV PICs and found that addition of cellular extract from uninfected NIH 3T3 cells could block autointegration and also restore intermolecular integration. Isolation of the intermolecular integration-complementing activity yielded HMG I(Y), as in the HIV-1 case. However, HMG I(Y) could not block autointegration, implicating a different host factor in this process. Additionally, when MoMuLV PICs were partially purified but not salt stripped, the intermolecular integration activity was reduced but could be stimulated by the addition of any of several purified DNA binding proteins. In summary, three activities were detected: (i) the intermolecular integration cofactor HMG I(Y), (ii) an autointegration barrier protein, and (iii) stimulatory DNA binding proteins.


2020 ◽  
Vol 22 (1) ◽  
pp. 58
Author(s):  
Thomas Gremminger ◽  
Zhenwei Song ◽  
Juan Ji ◽  
Avery Foster ◽  
Kexin Weng ◽  
...  

The reverse transcription of the human immunodeficiency virus 1 (HIV-1) initiates upon annealing of the 3′-18-nt of tRNALys3 onto the primer binding site (PBS) in viral RNA (vRNA). Additional intermolecular interactions between tRNALys3 and vRNA have been reported, but their functions remain unclear. Here, we show that abolishing one potential interaction, the A-rich loop: tRNALys3 anticodon interaction in the HIV-1 MAL strain, led to a decrease in viral infectivity and reduced the synthesis of reverse transcription products in newly infected cells. In vitro biophysical and functional experiments revealed that disruption of the extended interaction resulted in an increased affinity for reverse transcriptase (RT) and enhanced primer extension efficiency. In the absence of deoxyribose nucleoside triphosphates (dNTPs), vRNA was degraded by the RNaseH activity of RT, and the degradation rate was slower in the complex with the extended interaction. Consistently, the loss of vRNA integrity was detected in virions containing A-rich loop mutations. Similar results were observed in the HIV-1 NL4.3 strain, and we show that the nucleocapsid (NC) protein is necessary to promote the extended vRNA: tRNALys3 interactions in vitro. In summary, our data revealed that the additional intermolecular interaction between tRNALys3 and vRNA is likely a conserved mechanism among various HIV-1 strains and protects the vRNA from RNaseH degradation in mature virions.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 129
Author(s):  
Alžběta Dostálková ◽  
Barbora Vokatá ◽  
Filip Kaufman ◽  
Pavel Ulbrich ◽  
Tomáš Ruml ◽  
...  

The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed.


2017 ◽  
Vol 114 (10) ◽  
pp. 2723-2728 ◽  
Author(s):  
Mathilda Sjöberg ◽  
Robin Löving ◽  
Birgitta Lindqvist ◽  
Henrik Garoff

Viral membrane fusion proteins of class I are trimers in which the protomeric unit is a complex of a surface subunit (SU) and a fusion active transmembrane subunit (TM). Here we have studied how the protomeric units of Moloney murine leukemia virus envelope protein (Env) are activated in relation to each other, sequentially or simultaneously. We followed the isomerization of the SU-TM disulfide and subsequent SU release from Env with biochemical methods and found that this early activation step occurred sequentially in the three protomers, generating two asymmetric oligomer intermediates according to the scheme (SU-TM)3→ (SU-TM)2TM → (SU-TM)TM2→ TM3. This was the case both when activation was triggered in vitro by depleting stabilizing Ca2+from solubilized Env and when viral Env was receptor triggered on rat XC cells. In the latter case, the activation reaction was too fast for direct observation of the intermediates, but they could be caught by alkylation of the isomerization active thiol.


1987 ◽  
Vol 7 (10) ◽  
pp. 3459-3465
Author(s):  
B Lim ◽  
D A Williams ◽  
S H Orkin

Simplified Moloney murine leukemia virus-based recombinant retrovirus vectors have been constructed which transduce human adenosine deaminase (ADA) cDNA. ADA transcription is under the control of the constitutive promoter for the human X chromosome phosphoglycerate kinase (pgk) gene. In these simplified vectors, dominant selectable markers are not included and selection is dependent on overproduction of functional ADA enzyme. Primary murine hematopoietic cells were infected with helper-free recombinant ADA virus generated from Psi-2 packaging cells. Protein analysis revealed that human ADA enzyme was expressed in progenitor-derived hematopoietic colonies in vitro and CFU-S-derived spleen colonies in vivo. Enzyme expression was dependent on transcription from the pgk promoter. ADA expression in primary murine hematopoietic cells directed by the internal promoter was not adversely affected by the presence of the Moloney virus long terminal repeat enhancer sequence. Use of these vectors allows systematic evaluation of the effects of specific sequences in recombinant retrovirus vectors on expression in primary murine hematopoietic cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document