scholarly journals Coordinate Regulation of DNA Damage and Type I Interferon Responses Imposes an Antiviral State That Attenuates Mouse Gammaherpesvirus Type 68 Replication in Primary Macrophages

2012 ◽  
Vol 86 (12) ◽  
pp. 6899-6912 ◽  
Author(s):  
W. P. Mboko ◽  
B. C. Mounce ◽  
B. M. Wood ◽  
J. M. Kulinski ◽  
J. A. Corbett ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabella Batten ◽  
Mark W. Robinson ◽  
Arthur White ◽  
Cathal Walsh ◽  
Barbara Fazekas ◽  
...  

AbstractType I interferon (IFN) dysregulation is a major contributory factor in the development of several autoimmune diseases, termed type I interferonopathies, and is thought to be the pathogenic link with chronic inflammation in these conditions. Anti-neutrophil cytoplasmic antibody (ANCA)-Associated Vasculitis (AAV) is an autoimmune disease characterised by necrotising inflammation of small blood vessels. The underlying biology of AAV is not well understood, however several studies have noted abnormalities in type I IFN responses. We hypothesised that type I IFN responses are systemically dysregulated in AAV, consistent with features of a type I interferonopathy. To investigate this, we measured the expression of seven interferon regulated genes (IRGs) (ISG15, SIGLEC1, STAT1, RSAD2, IFI27, IFI44L and IFIT1) in peripheral blood samples, as well as three type I IFN regulated proteins (CXCL10, MCP-1 and CCL19) in serum samples from AAV patients, healthy controls and disease controls. We found no difference in type I IFN regulated gene or protein expression between AAV patients and healthy controls. Furthermore, IRG and IFN regulated protein expression did not correlate with clinical measurements of disease activity in AAV patients. Thus, we conclude that systemic type I IFN responses are not key drivers of AAV pathogenesis and AAV should not be considered a type I interferonopathy.


2016 ◽  
Vol 136 (9) ◽  
pp. S234
Author(s):  
M. Sarkar ◽  
L.C. Tsoi ◽  
X. Xing ◽  
L. Yun ◽  
P. Harms ◽  
...  

2019 ◽  
Author(s):  
David M. Calcagno ◽  
Richard P. Ng ◽  
Avinash Toomu ◽  
Claire Zhang ◽  
Kenneth Huang ◽  
...  

AbstractSterile tissue injury locally activates innate immune responses via interactions with damage associated molecular patterns (DAMPs). Here, by analyzing ∼120K single cell transcriptomes after myocardial infarction (MI) in mice and humans, we show neutrophil and monocyte subsets induce type I interferon (IFN) stimulated genes (ISGs) in myeloid progenitors of the bone marrow, far from the site of injury. In patients with acute MI, peripheral blood neutrophils and monocytes express ISGs at levels far beyond healthy individuals and comparable to patients with lupus. In the bone marrow of Tet2-/- mice, ISGs are spontaneously induced in myeloid progenitors and their progeny. In the heart, IFN responses are negatively regulated by Ccr2- resident macrophages in a Nrf2-dependent fashion. Our results show post-MI IFN signaling begins in the bone marrow, implicate multiple transcription factors in its regulation (Tet2, Irf3, Nrf2), and provide a clinical biomarker (ISG score) for studying post-MI IFN signaling in patients.


2019 ◽  
Vol 15 (10) ◽  
pp. e1008079 ◽  
Author(s):  
Liu Cao ◽  
Yanxi Ji ◽  
Lanyi Zeng ◽  
Qianyun Liu ◽  
Zhen Zhang ◽  
...  

2020 ◽  
Vol 48 (20) ◽  
pp. 11799-11811
Author(s):  
Natascha Gödecke ◽  
Jan Riedel ◽  
Sabrina Herrmann ◽  
Sara Behme ◽  
Ulfert Rand ◽  
...  

Abstract Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained—but optionally de-activatable—expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.


Cytokine ◽  
2012 ◽  
Vol 59 (3) ◽  
pp. 512
Author(s):  
Y. Wang ◽  
M. Swiecki ◽  
M. Cella ◽  
G. Alber ◽  
R.D. Schreiber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document