scholarly journals The Pokeweed Antiviral Protein Specifically Inhibits Ty1-Directed +1 Ribosomal Frameshifting and Retrotransposition in Saccharomyces cerevisiae

1998 ◽  
Vol 72 (2) ◽  
pp. 1036-1042 ◽  
Author(s):  
Nilgun E. Tumer ◽  
Bijal A. Parikh ◽  
Ping Li ◽  
Jonathan D. Dinman

ABSTRACT Programmed ribosomal frameshifting is a molecular mechanism that is used by many RNA viruses to produce Gag-Pol fusion proteins. The efficiency of these frameshift events determines the ratio of viral Gag to Gag-Pol proteins available for viral particle morphogenesis, and changes in ribosomal frameshift efficiencies can severely inhibit virus propagation. Since ribosomal frameshifting occurs during the elongation phase of protein translation, it is reasonable to hypothesize that agents that affect the different steps in this process may also have an impact on programmed ribosomal frameshifting. We examined the molecular mechanisms governing programmed ribosomal frameshifting by using two viruses of the yeast Saccharomyces cerevisiae. Here, we present evidence that pokeweed antiviral protein (PAP), a single-chain ribosomal inhibitory protein that depurinates an adenine residue in the α-sarcin loop of 25S rRNA and inhibits translocation, specifically inhibits Ty1-directed +1 ribosomal frameshifting in intact yeast cells and in an in vitro assay system. Using an in vivo assay for Ty1 retrotransposition, we show that PAP specifically inhibits Ty1 retrotransposition, suggesting that Ty1 viral particle morphogenesis is inhibited in infected cells. PAP does not affect programmed −1 ribosomal frameshift efficiencies, nor does it have a noticeable impact on the ability of cells to maintain the M1-dependent killer virus phenotype, suggesting that −1 ribosomal frameshifting does not occur after the peptidyltransferase reaction. These results provide the first evidence that PAP has viral RNA-specific effects in vivo which may be responsible for the mechanism of its antiviral activity.

2003 ◽  
Vol 23 (11) ◽  
pp. 4000-4012 ◽  
Author(s):  
Ludovic Delage ◽  
André Dietrich ◽  
Anne Cosset ◽  
Laurence Maréchal-Drouard

ABSTRACT Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant mitochondria. This in vitro system utilizes isolated mitochondria from Solanum tuberosum and synthetic tRNAs transcribed from cloned nuclear tRNA genes. Although incubation of radioactively labeled in vitro-transcribed tRNAAla, tRNAPhe, and tRNAMet-e with isolated potato mitochondria resulted in importation, as measured by nuclease protection, the amount of tRNA transcripts protected at saturation was at least five times higher for tRNAAla than for the two other tRNAs. This difference in in vitro saturation levels of import is consistent with the in vivo localization of these tRNAs, since cytosolic tRNAAla is naturally imported into potato mitochondria whereas tRNAPhe and tRNAMet-e are not. Characterization of in vitro tRNA import requirements indicates that mitochondrial tRNA import proceeds in the absence of any added cytosolic protein fraction, involves at least one protein component on the surface of mitochondria, and requires ATP-dependent step(s) and a membrane potential.


1987 ◽  
Vol 7 (7) ◽  
pp. 2545-2551 ◽  
Author(s):  
A Gampel ◽  
A Tzagoloff

A region of the Saccharomyces cerevisiae mitochondrial cytochrome b gene encompassing the entire terminal intron plus flanking exonic sequences has been cloned in an SP6 vector. A runoff transcript prepared from this construct as well as the native cytochrome b pre-mRNA containing the terminal intervening sequence were found to act as substrates for the autocatalytic excision of the intervening sequence in vitro. This reaction proceeds under conditions previously shown by Cech and co-workers to promote protein-independent excision of the Tetrahymena rRNA intervening sequence. The 5' and 3' termini of the excised intervening sequence, determined by S1 nuclease mapping and sequence analysis, are consistent with the known sequence of the cytochrome b mRNA. The same region of the cytochrome b gene from a yeast mutant, defective in splicing due to a mutation in a critical sequence inside the terminal intron, has also been cloned in an SP6 vector. The mutant transcript fails to self-splice in the in vitro assay. These observations provide strong presumptive evidence that in vivo processing of the terminal intervening sequence of the cytochrome b pre-mRNA occurs by an autocatalytic mechanism analogous to that shown for other group I introns. In vivo processing of the terminal intervening sequence of the cytochrome b pre-mRNA, however, exhibits complete dependence on a protein factor previously shown to be encoded by the nuclear gene CBP2.


2008 ◽  
Vol 7 (9) ◽  
pp. 1441-1449 ◽  
Author(s):  
Robert B. Annan ◽  
Cunle Wu ◽  
Daniel D. Waller ◽  
Malcolm Whiteway ◽  
David Y. Thomas

ABSTRACT Small GTPases of the Rho family act as molecular switches, and modulation of the GTP-bound state of Rho proteins is a well-characterized means of regulating their signaling activity in vivo. In contrast, the regulation of Rho-type GTPases by posttranslational modifications is poorly understood. Here, we present evidence of the control of the Saccharomyces cerevisiae Rho-type GTPase Rho5p by phosphorylation and ubiquitination. Rho5p binds to Ste50p, and the expression of the activated RHO5(Q91H) allele in an Δste50 strain is lethal under conditions of osmotic stress. An overexpression screen identified RGD2 and MSI1 as being high-copy suppressors of the osmotic sensitivity of this lethality. Rgd2p had been identified as being a possible Rho5p GTPase-activating protein based on an in vitro assay; this result supports its function as a regulator of Rho5p activity in vivo. MSI1 was previously identified as being a suppressor of hyperactive Ras/cyclic AMP signaling, where it antagonizes Npr1p kinase activity and promotes ubiquitination. Here, we show that Msi1p also acts via Npr1p to suppress activated Rho5p signaling. Rho5p is ubiquitinated, and its expression is lethal in a strain that is compromised for proteasome activity. These data identify Rho5p as being a target of Msi1p/Npr1p regulation and describe a regulatory circuit involving phosphorylation and ubiquitination.


2003 ◽  
Vol 47 (3) ◽  
pp. 1052-1061 ◽  
Author(s):  
Fatih M. Uckun ◽  
Francis Rajamohan ◽  
Sharon Pendergrass ◽  
Zahide Ozer ◽  
Barbara Waurzyniak ◽  
...  

ABSTRACT A molecular model of pokeweed antiviral protein (PAP)-RNA interactions was used to rationally engineer FLP-102(151AA152) and FLP-105(191AA192) as nontoxic PAPs with potent anti-human immunodeficiency virus (anti-HIV) activities. FLP-102 and FLP-105 have been produced in Escherichia coli and tested both in vitro and in vivo. These proteins depurinate HIV type 1 (HIV-1) RNA much better than rRNA and are more potent anti-HIV agents than native PAP or recombinant wild-type PAP. They are substantially less toxic than native PAP in BALB/c mice and exhibit potent in vivo activities against genotypically and phenotypically nucleoside reverse transcriptase inhibitor-resistant HIV-1 in a surrogate human peripheral blood lymphocyte (Hu-PBL) SCID mouse model of human AIDS. Rationally engineered nontoxic recombinant PAPs such as FLP-102 and FLP-105 may provide the basis for effective salvage therapies for patients harboring highly drug-resistant strains of HIV-1. The documented in vitro potencies of FLP-102 and FLP-105, their in vivo antiretroviral activities in the HIV-infected Hu-PBL SCID mouse model, and their favorable toxicity profiles in BALB/c mice warrant the further development of these promising new biotherapeutic agents.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2201-2214 ◽  
Author(s):  
FM Uckun ◽  
C Manivel ◽  
D Arthur ◽  
LM Chelstrom ◽  
D Finnegan ◽  
...  

Abstract A highly aggressive subclone of the human CALLA+C mu+ pre-B acute lymphoblastic leukemia (ALL) cell line NALM-6 (designated NALM-6-UM1) caused disseminated and fatal leukemia in CB.17 mice with severe combined immunodeficiency (SCID). An intravenous challenge with 1 x 10(6) (NALM-6-UM1 cells caused 15 of 27 (56%) SCID mice to become paraplegic at 31 +/- 2 days (median = 33 days) and 27 of 27 (100%) mice to die of disseminated leukemia at 38 +/- 1 days (median = 39 days). We used this SCID mouse model of aggressive human pre-B ALL to evaluate the in vivo antileukemic efficacy of B43 (anti-CD19)-pokeweed antiviral protein (PAP) immunotoxin. A 3-day treatment with nontoxic doses of B43- PAP markedly reduced the incidence of paraplegia and improved event- free survival (EFS) in SCID mice challenged with 1 x 10(6) NALM-6-UM1 pre-B ALL cells, as reflected by significantly higher cumulative proportions of mice free of paraplegia or alive at 1 to 7 months, as compared with phosphate-buffered saline (PBS) treated control mice. The Kaplan-Meier estimates and standard errors of the probability of developing paraplegia after inoculation of 1 x 10(6) NALM-6-UM1 cells was 64% +/- 10% for PBS-treated mice (median time to paraplegia = 37 days) (N = 27), 18% +/- 8% for mice treated with 15 micrograms B43-PAP (5 micrograms/mouse/d x 3 days) (N = 23) and 5% +/- 5% for mice treated with 30 micrograms B43-PAP (10 micrograms/mouse/d x 3 days) (N = 21). While 27 of 27 PBS-treated control SCID mice died of leukemia at 38 +/- 1 days (range = 24 to 54 days), only 16 of 44 B43-PAP-treated mice developed leukemia at 74 +/- 12 days (range = 30 to 182 days), consistent with greater than or equal to 6 logs kill of clonogenic NALM- 6-UM1 cells in 64% of SCID mice. The Kaplan-Meier estimates and standard errors of the probability of long-term EFS after inoculation of 1 x 10(6) NALM-6-UM1 cells were 65% +/- 10% for mice treated with 15 micrograms B43-PAP and 60% +/- 11% for mice treated with 30 micrograms B43-PAP with a median survival time of greater than 7 months for both groups. In contrast, neither unconjugated B43 monoclonal antibody nor the anti-T-cell immunotoxin G17.2 (anti-CD4)-PAP decreased the incidence of paraplegia or improved EFS.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 32 (2) ◽  
pp. 212-221 ◽  
Author(s):  
Osmond J. D'Cruz ◽  
Barbara Waurzyniak ◽  
Fatih M. Uckun

Pokeweed antiviral protein (PAP), a 29-kDa plant-derived protein isolated from Phytolacca americana, is a promising nonspermicidal broad-spectrum antiviral microbicide. This study evaluated the mucosal toxicity potential of native PAP in the in vivo rabbit vaginal irritation model as well as the in vitro reconstituted human vaginal epithelial tissue model. Twenty-two New Zealand white rabbits in 4 subgroups were exposed intravaginally to a gel with and without 0.01, 0.1, or 1.0% native PAP for 10 consecutive days. The dose of PAP used represented nearly 200- to 20,000 times its in vitro anti-HIV IC50 value. Animals were euthanized on day 11 and vaginal tissues were evaluated for histologic and immunohistochemical evidence of mucosal toxicity, cellular inflammation, and hyperplasia. Blood was analyzed for changes in hematology and clinical chemistry profiles. Reconstituted human vaginal epithelial tissue grown on membrane filters was exposed to 0.1, 0.1, or 1.0% native PAP in medium or topically via a gel for 24 hours and tissue damage was evaluated by histological assessment. In the in vivo rabbit vaginal irritation model, half of all PAP-treated rabbits (8/16) exhibited an acceptable range of vaginal mucosal irritation (total score <8 out of a possible 16), whereas nearly a third of PAP-treated rabbits (5/16) developed moderate to marked vaginal mucosal irritation (total score >11). However, no treatment-related adverse effects were seen in hematological or clinical chemistry measurements. Furthermore, in vitro exposure of a 3-dimensional human vaginal tissue grown on polycarbonate membrane filters to identical concentrations of PAP either added to culture medium or applied topically via gel formulation did not result in direct toxicity as determined by histologic evaluation. These findings indicate careful monitoring of vaginal irritation will be required in the clinical development of PAP as a nonspermicidal microbicide.


2011 ◽  
Vol 43 (7) ◽  
pp. 559-566 ◽  
Author(s):  
Wenting Li ◽  
Chuanlong Zhu ◽  
Xiliu Chen ◽  
Yi Li ◽  
Rentao Gao ◽  
...  

1987 ◽  
Vol 7 (7) ◽  
pp. 2545-2551
Author(s):  
A Gampel ◽  
A Tzagoloff

A region of the Saccharomyces cerevisiae mitochondrial cytochrome b gene encompassing the entire terminal intron plus flanking exonic sequences has been cloned in an SP6 vector. A runoff transcript prepared from this construct as well as the native cytochrome b pre-mRNA containing the terminal intervening sequence were found to act as substrates for the autocatalytic excision of the intervening sequence in vitro. This reaction proceeds under conditions previously shown by Cech and co-workers to promote protein-independent excision of the Tetrahymena rRNA intervening sequence. The 5' and 3' termini of the excised intervening sequence, determined by S1 nuclease mapping and sequence analysis, are consistent with the known sequence of the cytochrome b mRNA. The same region of the cytochrome b gene from a yeast mutant, defective in splicing due to a mutation in a critical sequence inside the terminal intron, has also been cloned in an SP6 vector. The mutant transcript fails to self-splice in the in vitro assay. These observations provide strong presumptive evidence that in vivo processing of the terminal intervening sequence of the cytochrome b pre-mRNA occurs by an autocatalytic mechanism analogous to that shown for other group I introns. In vivo processing of the terminal intervening sequence of the cytochrome b pre-mRNA, however, exhibits complete dependence on a protein factor previously shown to be encoded by the nuclear gene CBP2.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2649-2661 ◽  
Author(s):  
FM Uckun ◽  
LM Chelstrom ◽  
JD Irvin ◽  
D Finnegan ◽  
R Gunther ◽  
...  

Abstract We show that a highly aggressive subclone of murine BCL-1 B-lineage leukemia expresses a single 2.4-kb transcript hybridizing to the human CD19 cDNA probe and reacts strongly with the anti-human CD19 monoclonal antibodies (MoAb) B43, B4, Leu-12, and J3–119. In contrast to their strong reactivity with anti-human CD19 MoAb, BCL-1 cells show no reactivity with MoAb directed against human CD22, CD72, HLA-DR, IgD, or IgM. Western blot analysis of BCL-1 whole cell lysates with the anti- human CD19 MoAb J3–119 showed a single 69-Kd protein band, which was not detected by the negative control MoAb G19.4 (anti-CD3). In contrast to BCL-1 cells, normal BALB/c splenocytes or mouse splenocyte/myeloma hybridoma cell lines did not (1) express any transcripts that hybridized to the human CD19 cDNA probe, (2) react with B43/anti-CD19 MoAb, or (3) express the 69-Kd protein that reacts with the anti-human CD19 MoAb J3–119. Murine BCL-1 B-cell leukemia thus provides a unique model of disseminated B-lineage leukemia to evaluate the antileukemic efficacy of anti-CD19 immunotoxins. This model was subsequently used to evaluate the in vivo homing ability, pharmacokinetics, and antileukemic efficacy of B43 MoAb conjugated to the plant hemitoxin pokeweed antiviral protein (PAP). B43-PAP immunotoxin (1) showed strong and antigen-specific reactivity with BCL-1 cells, (2) promptly penetrated the spleens of leukemic mice, (3) rapidly reduced the BCL-1 leukemia burden of leukemic mice and, most importantly, (4) improved survival. Finally, B43-PAP immunotoxin was more effective against BCL-1 leukemia than 700 cGy (LD100/30) total body irradiation (TBI) followed by syngeneic bone marrow transplantation (BMT).


Sign in / Sign up

Export Citation Format

Share Document