scholarly journals Differential Requirements for Conserved E2 Binding Sites in the Life Cycle of Oncogenic Human Papillomavirus Type 31

1998 ◽  
Vol 72 (2) ◽  
pp. 1071-1077 ◽  
Author(s):  
Frank Stubenrauch ◽  
Hock B. Lim ◽  
Laimonis A. Laimins

ABSTRACT Human papillomavirus (HPV) E2 proteins regulate viral replication by binding to sites in the upstream regulatory region (URR) and by complex formation with the E1 origin recognition protein. In the genital HPV types, the distribution and location of four E2 binding sites (BS1 to BS4) which flank a single E1 binding site are highly conserved. We have examined the roles of these four E2 sites in the viral life cycle of HPV type 31 (HPV31) by using recently developed methods for the biosynthesis of papillomaviruses from transfected DNA templates (M. G. Frattini et al., Proc. Natl. Acad. Sci. USA 93:3062–3067, 1996). In transient assays, no single site was found to be necessary for replication, and mutation of the early promoter-proximal site (BS4) led to a fourfold increase in replication. Cotransfection of the HPV31 wild-type (HPV-wt) and mutant genomes with expression vectors revealed that E1 stimulated replication of HPV31-wt as well as the HPV31-BS1, -BS2, and -BS3 mutants. In contrast, increased expression of E2 decreased replication of these genomes. Replication of the HPV31-BS4 mutant genome was not further increased by cotransfection of E1 expression vectors but was stimulated by E2 coexpression. In stably transfected normal human keratinocytes, mutation of either BS1, BS3, or BS4 resulted in integration of viral genomes into host chromosomes. In contrast, mutation of BS2 had no effect on stable maintenance of episomes or copy number. Following growth of stably transfected lines in organotypic raft cultures, the differentiation-dependent induction of late gene expression and amplification of viral DNA of the BS2 mutant was found to be similar to that of HPV31-wt. We were unable to find a role for BS2 in our assays for viral functions. We conclude that at least three of the four E2 binding sites in the URRs of HPVs are essential for the productive viral life cycle. The specific arrangement of E2 binding sites within the URR appears to be more important for viral replication than merely the number of sites.

mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Claire D. James ◽  
Apurva T. Prabhakar ◽  
Raymonde Otoa ◽  
Michael R. Evans ◽  
Xu Wang ◽  
...  

ABSTRACT Human papillomaviruses induce a host of anogenital cancers, as well as oropharyngeal cancer (HPV+OPC); human papillomavirus 16 (HPV16) is causative in around 90% of HPV+OPC cases. Using telomerase reverse transcriptase (TERT) immortalized foreskin keratinocytes (N/Tert-1), we have identified significant host gene reprogramming by HPV16 (N/Tert-1+HPV16) and demonstrated that N/Tert-1+HPV16 support late stages of the viral life cycle. Expression of the cellular dNTPase and homologous recombination factor sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) is transcriptionally regulated by HPV16 in N/Tert-1. CRISPR/Cas9 removal of SAMHD1 from N/Tert-1 and N/Tert-1+HPV16 demonstrates that SAMHD1 controls cell proliferation of N/Tert-1 only in the presence of HPV16; the deletion of SAMHD1 promotes hyperproliferation of N/Tert-1+HPV16 cells in organotypic raft cultures but has no effect on N/Tert-1. Viral replication is also elevated in the absence of SAMHD1. This new system has allowed us to identify a specific interaction between SAMHD1 and HPV16 that regulates host cell proliferation and viral replication; such studies are problematic in nonimmortalized primary keratinocytes due to their limited life span. To confirm the relevance of our results, we repeated the analysis with human tonsil keratinocytes (HTK) immortalized by HPV16 (HTK+HPV16) and observed the same hyperproliferative phenotype following CRISPR/Cas9 editing of SAMHD1. Identical results were obtained with three independent CRISPR/Cas9 guide RNAs. The isogenic pairing of N/Tert-1 with N/Tert-1+HPV16, combined with HTK+HPV16, presents a unique system to identify host genes whose products functionally interact with HPV16 to regulate host cellular growth in keratinocytes. IMPORTANCE HPVs are causative agents in human cancers and are responsible for around of 5% of all cancers. A better understanding of the viral life cycle in keratinocytes will facilitate the development of novel therapeutics to combat HPV-positive cancers. Here, we present a unique keratinocyte model to identify host proteins that specifically interact with HPV16. Using this system, we report that a cellular gene, SAMHD1, is regulated by HPV16 at the RNA and protein levels in keratinocytes. Elimination of SAMHD1 from these cells using CRISPR/Cas9 editing promotes enhanced cellular proliferation by HPV16 in keratinocytes and elevated viral replication but not in keratinocytes that do not have HPV16. Our study demonstrates a specific intricate interplay between HPV16 and SAMHD1 during the viral life cycle and establishes a unique model system to assist exploring host factors critical for HPV pathogenesis.


2002 ◽  
Vol 76 (5) ◽  
pp. 2263-2273 ◽  
Author(s):  
Walter G. Hubert ◽  
Laimonis A. Laimins

ABSTRACT The E1 and E2 proteins are both required for papillomavirus DNA replication, and replication efficiency is controlled by the abundance of these factors. In human papillomaviruses (HPVs), the regulation of E1 and E2 expression and its effect on viral replication are not well understood. In particular, it is not known if E1 and E2 modulate their own expression and how posttranscriptional mechanisms may affect the levels of the replication proteins. Previous studies have implicated splicing within the E6 open reading frame (ORF) as being important for modulating replication of HPV type 31 (HPV31) through altered expression of E1 and E2. To analyze the function of the E6 intron in viral replication more specifically, we examined the effects of E6 splicing mutations in the context of entire viral genomes in transient assays. HPV31 genomes which had mutations in the splice donor site (E6SD) or the splice acceptor site (E6SA), a deletion of the intron (E6ID), or substituted heterologous intron sequences (E6IS) were constructed. Compared to wild-type (wt) HPV31, pHPV31-E6SD, -E6SA, and -E6IS replicated inefficiently while pHPV31-E6ID replicated at an intermediate level. Cotransfection of the E6 mutant genomes with an E1 expression vector strongly activated their replication levels, indicating that efficient expression of E1 requires E6 internal splicing. In contrast, replication was activated only moderately with an E2 expression vector. Replacing the wt E6 intron in HPV31 with a heterologous intron from simian virus 40 (E6SR2) resulted in replication levels similar to that of the wt in the absence of expression vectors, suggesting that mRNA splicing upstream of the E1 ORF is important for high-level replication. To examine the effects of E6 intron splicing on E1 and E2 expression directly, we constructed reporter DNAs in which the luciferase coding sequences were fused in frame to the E1 (E1Luc) or E2 (E2Luc) gene. Reporter activities were then analyzed in transient assays with cotransfected E1 or E2 expression vectors. Both reporters were moderately activated by E1 in a dose-dependent manner. In addition, E1Luc was activated by low doses of E2 but was repressed at high doses. In contrast, E2 had little effect on E2Luc activity. These data indicate that E1 expression and that of E2 are interdependent and regulated differentially. When the E6 splicing mutations were analyzed in both reporter backgrounds, only E1Luc activities correlated with splicing competence in the E6 ORF. These findings support the hypothesis that the E6 intron primarily regulates expression of E1. Finally, in long-term replication assays, none of the E6 mutant genomes could be stably maintained. However, cotransfection of the E6 splicing mutant genomes with pHPV31-E7NS, which contains a nonsense mutation in the E7 coding sequence, restored stable replication of some mutants. Our observations indicate that E1 expression and that of E2 are differentially regulated at multiple levels and that efficient expression of E1 is required for transient and stable viral replication. These regulatory mechanisms likely act to control HPV copy number during the various phases of the viral life cycle.


2002 ◽  
Vol 76 (10) ◽  
pp. 4798-4809 ◽  
Author(s):  
Ellora Sen ◽  
Jennifer L. Bromberg-White ◽  
Craig Meyers

ABSTRACT The function of the 5′ region of the upstream regulatory region (URR) in regulating E6/E7 expression in cancer-associated papillomaviruses has been largely uncharacterized. In this study we used linker-scanning mutational analysis to identify potential cis regulatory elements contained within a portion of the 5′ region of the URR that are involved in regulating transcription of the E6/E7 promoter at different stages of the viral life cycle. The mutational analysis illustrated differences in the transcriptional utilization of specific regions of the URR depending on the stage of the viral life cycle. This study identified (i) viral cis elements that regulate transcription in the presence and absence of any viral gene products or viral DNA replication, (ii) the role of host tissue differentiation in viral transcriptional regulation, and (iii) cis regulatory regions that are effected by induction of the protein kinase C pathway. Our studies have provided an extensive map of functional elements in the 5′ region (nuncleotides 7259 to 7510) of the human papillomavirus type 31 URR that are involved in the regulation of p99 promoter activity at different stages of the viral life cycle.


2004 ◽  
Vol 78 (2) ◽  
pp. 612-629 ◽  
Author(s):  
Ellora Sen ◽  
Samina Alam ◽  
Craig Meyers

ABSTRACT Using linker scanning mutational analysis, we recently identified potential cis regulatory elements contained within the 5′ upstream regulatory region (URR) domain and auxiliary enhancer (AE) region of the human papillomavirus type 31 (HPV31) URR involved in the regulation of E6/E7 promoter activity at different stages of the viral life cycle. For the present study, we extended the linker scanning mutational analysis to identify potential cis elements located in the keratinocyte enhancer (KE) region (nucleotides 7511 to 7762) of the HPV31 URR and to characterize cellular factors that bind to these elements under conditions representing different stages of the viral life cycle. The linker scanning mutational analysis identified viral cis elements located in the KE region that regulate transcription in the presence and absence of any viral gene products or viral DNA replication and determine the role of host tissue differentiation on viral transcriptional regulation. Using electrophoretic mobility shift assays, we illustrated defined reorganization in the composition of cellular transcription factors binding to the same cis regulatory elements at different stages of the HPV differentiation-dependent life cycle. Our studies provide an extensive map of functional elements in the KE region of the HPV31 URR, identify cis regulatory elements that exhibit significant transcription regulatory potential, and illustrate changes in specific protein-DNA interactions at different stages of the viral life cycle. The variable recruitment of transcription factors to the same cis element under different cellular conditions may represent a mechanism underlying the tight link between keratinocyte differentiation and E6/E7 expression.


1999 ◽  
Vol 73 (4) ◽  
pp. 3505-3510 ◽  
Author(s):  
Michelle A. Ozbun ◽  
Craig Meyers

ABSTRACT Organotypic cultures support the stratification and differentiation of keratinocytes and the human papillomavirus (HPV) life cycle. We report transcription from four novel promoters in the HPV31b upstream regulatory region during the viral life cycle in organotypic cultures. Promoter initiation was not differentiation dependent; two promoters were down-regulated upon epithelial differentiation.


2005 ◽  
Vol 79 (10) ◽  
pp. 5914-5922 ◽  
Author(s):  
Walter G. Hubert

ABSTRACT While the central role of the viral upstream regulatory region (URR) in the human papillomavirus (HPV) life cycle has been well established, its effects on viral replication factor expression and plasmid replication of HPV type 16 (HPV16) remain unclear. Some nonprototypic variants of HPV16 contain altered URR sequences and are considered to increase the oncogenic risk of infections. To determine the relationship between viral replication and variant URRs, hybrid viral genomes were constructed with the replication-competent HPV16 prototype W12 and analyzed in assays which recapitulate the different phases of normal viral replication. The establishment efficiencies of hybrid HPV16 genomes differed about 20-fold among European prototypes and variants from Africa and America. Generally, European and African genomes exhibited the lowest replication efficiencies. The high replication levels observed with American variants were primarily attributable to their efficient expression of the replication factors E1 and E2. The maintenance levels of these viral genomes varied about fivefold, which correlated with their respective establishment phenotypes and published P97 activities. Vegetative DNA amplification could also be observed with replicating HPV16 genomes. These results indicate that efficient E1/E2 expression and elevated plasmid replication levels during the persistent stage of infection may comprise a risk factor in HPV16-mediated oncogenesis.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 786
Author(s):  
Ryan T. Gibson ◽  
Elliot J. Androphy

The multi-subunit structural maintenance of chromosomes (SMC) 5/6 complex includes SMC6 and non-SMC element (NSE)3. SMC5/6 is essential for homologous recombination DNA repair and functions as an antiviral factor during hepatitis B (HBV) and herpes simplex-1 (HSV-1) viral infections. Intriguingly, SMC5/6 has been found to associate with high-risk human papillomavirus (HPV) E2 regulatory proteins, but the functions of this interaction and its role during HPV infection remain unclear. Here, we further characterize SMC5/6 interactions with HPV-31 E2 and its role in the HPV life cycle. Co-immunoprecipitation (co-IP) revealed that SMC6 interactions with HPV-31 E2 require the E2 transactivation domain, implying that SMC5/6 interacts with full-length E2. Using chromatin immunoprecipitation, we found that SMC6 is present on HPV-31 episomes at E2 binding sites. The depletion of SMC6 and NSE3 increased viral replication and transcription in keratinocytes maintaining episomal HPV-31, indicating that SMC5/6 restricts the viral replicative program. SMC6 interactions with E2 were reduced in the presence of HPV-31 E1, suggesting that SMC6 and E1 compete for E2 binding. Our findings demonstrate SMC5/6 functions as a repressor of the viral replicative program and this may involve inhibiting the initiation of viral replication.


2007 ◽  
Vol 88 (11) ◽  
pp. 3067-3077 ◽  
Author(s):  
Kartika Padhan ◽  
Charu Tanwar ◽  
Amjad Hussain ◽  
Pui Yan Hui ◽  
Man Yan Lee ◽  
...  

The orf3a (also called X1 or U274) gene is the largest unique open reading frame in the severe acute respiratory syndrome coronavirus genome and has been proposed to encode a protein with three transmembrane domains and a large cytoplasmic domain. Recent work has suggested that the 3a protein may play a structural role in the viral life cycle, although the mechanisms for this remain uncharacterized. Here, the expression of the 3a protein in various in vitro systems is shown, it has been localized to the Golgi region and its membrane topology in transfected cells has been confirmed. Three potential caveolin-1-binding sites were reported to be present in the 3a protein. By using various biochemical, biophysical and genetic techniques, interaction of the 3a protein with caveolin-1 is demonstrated. Any one of the potential sites in the 3a protein was sufficient for this interaction. These results are discussed with respect to the possible roles of the 3a protein in the viral life cycle.


2004 ◽  
Vol 68 (2) ◽  
pp. 362-372 ◽  
Author(s):  
Michelle S. Longworth ◽  
Laimonis A. Laimins

SUMMARY Human papillomaviruses (HPV) are the etiological agents of cervical and other anogenital malignancies. Over 100 different types of HPVs have been identified to date, and all target epithelial tissues for infection. One-third of HPV types specifically infect the genital tract, and a subset of these are the causative agents of anogenital cancers. Other HPV types that infect the genital tract induce benign hyperproliferative lesions or genital warts. The productive life cycle of HPVs is linked to epithelial differentiation. Papillomaviruses are thought to infect cells in the basal layer of stratified epithelia and establish their genomes as multicopy nuclear episomes. In these cells, viral DNA is replicated along with cellular chromosomes. Following cell division, one of the daughter cells migrates away from the basal layer and undergoes differentiation. In highly differentiated suprabasal cells, vegetative viral replication and late-gene expression are activated, resulting in the generation of progeny virions. Since virion production is restricted to differentiated cells, infected basal cells can persist for up to several decades or until the immune system clears the infection. The E6 and E7 genes encode viral oncoproteins that target Rb and p53, respectively. During the viral life cycle, these proteins facilitate stable maintenance of episomes and stimulate differentiated cells to reenter the S phase. The E1 and E2 proteins act as origin recognition factors as well as regulators of early viral transcription. The functions of the E5 and E1^E4 proteins are still largely unknown, but these proteins have been implicated in modulating late viral functions. The L1 and L2 proteins form icosahedral capsids for progeny virion generation. The characterization of the cellular targets of these viral proteins and the mechanisms regulating the differentiation-dependent viral life cycle remain active areas for the study of these important human pathogens.


Sign in / Sign up

Export Citation Format

Share Document