scholarly journals Mutations in a Conserved Residue in the Influenza Virus Neuraminidase Active Site Decreases Sensitivity to Neu5Ac2en-Derived Inhibitors

1998 ◽  
Vol 72 (3) ◽  
pp. 2456-2462 ◽  
Author(s):  
Jennifer L. McKimm-Breschkin ◽  
Anjali Sahasrabudhe ◽  
Tony J. Blick ◽  
Mandy McDonald ◽  
Peter M. Colman ◽  
...  

ABSTRACT The influenza virus neuraminidase (NA)-specific inhibitor zanamivir (4-guanidino-Neu5Ac2en) is effective in humans when administered topically within the respiratory tract. The search for compounds with altered pharmacological properties has led to the identification of a novel series of influenza virus NA inhibitors in which the triol group of zanamivir has been replaced by a hydrophobic group linked by a carboxamide at the 6 position (6-carboxamide). NWS/G70C variants generated in vitro, with decreased sensitivity to 6-carboxamide, contained hemagglutinin (HA) and/or NA mutations. HA mutants bound with a decreased efficiency to the cellular receptor and were cross-resistant to all the NA inhibitors tested. The NA mutation, an Arg-to-Lys mutation, was in a previously conserved site, Arg292, which forms part of a triarginyl cluster in the catalytic site. In enzyme assays, the NA was equally resistant to zanamivir and 4-amino-Neu5Ac2en but showed greater resistance to 6-carboxamide and was most resistant to a new carbocyclic NA inhibitor, GS4071, which also has a hydrophobic side chain at the 6 position. Consistent with enzyme assays, the lowest resistance in cell culture was seen to zanamivir, more resistance was seen to 6-carboxamide, and the greatest resistance was seen to GS4071. Substrate binding and enzyme activity were also decreased in the mutant, and consequently, virus replication in both plaque assays and liquid culture was compromised. Altered binding of the hydrophobic side chain at the 6 position or the triol group could account for the decreased binding of both the NA inhibitors and substrate.

2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Brad Gilbertson ◽  
Wy Ching Ng ◽  
Simon Crawford ◽  
Jenny L. McKimm-Breschkin ◽  
Lorena E. Brown

ABSTRACT We previously identified a novel inhibitor of influenza virus in mouse saliva that halts the progression of susceptible viruses from the upper to the lower respiratory tract of mice in vivo and neutralizes viral infectivity in MDCK cells. Here, we investigated the viral target of the salivary inhibitor by using reverse genetics to create hybrid viruses with some surface proteins derived from an inhibitor-sensitive strain and others from an inhibitor-resistant strain. These viruses demonstrated that the origin of the viral neuraminidase (NA), but not the hemagglutinin or matrix protein, was the determinant of susceptibility to the inhibitor. Comparison of the NA sequences of a panel of H3N2 viruses with differing sensitivities to the salivary inhibitor revealed that surface residues 368 to 370 (N2 numbering) outside the active site played a key role in resistance. Resistant viruses contained an EDS motif at this location, and mutation to either EES or KDS, found in highly susceptible strains, significantly increased in vitro susceptibility to the inhibitor and reduced the ability of the virus to progress to the lungs when the viral inoculum was initially confined to the upper respiratory tract. In the presence of saliva, viral strains with a susceptible NA could not be efficiently released from the surfaces of infected MDCK cells and had reduced enzymatic activity based on their ability to cleave substrate in vitro. This work indicates that the mouse has evolved an innate inhibitor similar in function, though not in mechanism, to what humans have created synthetically as an antiviral drug for influenza virus. IMPORTANCE Despite widespread use of experimental pulmonary infection of the laboratory mouse to study influenza virus infection and pathogenesis, to our knowledge, mice do not naturally succumb to influenza. Here, we show that mice produce their own natural form of neuraminidase inhibitor in saliva that stops the virus from reaching the lungs, providing a possible mechanism through which the species may not experience severe influenza virus infection in the wild. We show that the murine salivary inhibitor targets the outer surface of the influenza virus neuraminidase, possibly occluding entry to the enzymatic site rather than binding within the active site like commercially available neuraminidase inhibitors. This knowledge sheds light on how the natural inhibitors of particular species combat infection.


1998 ◽  
Vol 42 (3) ◽  
pp. 647-653 ◽  
Author(s):  
Weixing Li ◽  
Paul A. Escarpe ◽  
Eugene J. Eisenberg ◽  
Kenneth C. Cundy ◽  
Clive Sweet ◽  
...  

ABSTRACT GS 4071 is a potent carbocyclic transition-state analog inhibitor of influenza virus neuraminidase with activity against both influenza A and B viruses in vitro. GS 4116, the guanidino analog of GS 4071, is a 10-fold more potent inhibitor of influenza virus replication in tissue culture than GS 4071. In this study we determined the oral bioavailabilities of GS 4071, GS 4116, and their respective ethyl ester prodrugs in rats. Both parent compounds and the prodrug of the guanidino analog exhibited poor oral bioavailability (2 to 4%) and low peak concentrations in plasma (C maxs; C max<0.06 μg/ml). In contrast, GS 4104, the ethyl ester prodrug of GS 4071, exhibited good oral bioavailability (35%) as GS 4071 and high C maxs of GS 4071 (Cmax = 0.47 μg/ml) which are 150 times the concentration necessary to inhibit influenza virus neuraminidase activity by 90%. The bioavailability of GS 4104 as GS 4071 was also determined in mice (30%), ferrets (11%), and dogs (73%). The plasma of all four species exhibited high, sustained concentrations of GS 4071 such that at 12 h postdosing the concentrations of GS 4071 in plasma exceeded those necessary to inhibit influenza virus neuraminidase activity by 90%. These results demonstrate that GS 4104 is an orally bioavailable prodrug of GS 4071 in animals and that it has the potential to be an oral agent for the prevention and treatment of influenza A and B virus infections in humans.


1996 ◽  
Vol 40 (1) ◽  
pp. 40-46 ◽  
Author(s):  
J L McKimm-Breschkin ◽  
T J Blick ◽  
A Sahasrabudhe ◽  
T Tiong ◽  
D Marshall ◽  
...  

The compounds 4-amino-Neu5Ac2en (5-acetylamino-2,6-anhydro-4-amino-3,4,5- trideoxy-D-glycerol-D-galacto-non-2-enoic acid) and 4-guanidino-Neu5Ac2en (5-acetylamino-2,6-anhydro-4-guanidino-3,4,5- trideoxy-D-glycerol-D-galacto-non-2-enoic acid), which selectively inhibit the influenza virus neuraminidase, have been tested in vitro for their ability to generate drug-resistant variants. NWS/G70C virus (H1N9) was cultured in each drug by limiting-dilution passaging. After five or six passages in either compound, there emerged viruses which had a reduced sensitivity to the inhibitors in cell culture. Variant viruses were up to 1,000-fold less sensitive in plaque assays, liquid culture, and a hemagglutination-elution assay. In addition, cross-resistance to both compounds was seen in all three assays. Some isolates demonstrated drug dependence with an increase in both size and number of plaques in a plaque assay and an increase in virus yield in liquid culture in the presence of inhibitors. No significant difference in neuraminidase enzyme activity was detected in vitro, and no sequence changes in the conserved sites of the neuraminidase were found. However, changes in conserved amino acids in the hemagglutinin were detected. These amino acids were associated with either the hemagglutinin receptor binding site, Thr-155, or the left edge of the receptor binding pocket, Val-223 and Arg-229. Hence, mutations at these sites could be expected to affect the affinity or specificity of the hemagglutinin binding. Compensating mutations resulting in a weakly binding hemagglutinin thus seem to be circumventing the inhibition of the neuraminidase by allowing the virus to be released from cells with less dependence on the neuraminidase.


2004 ◽  
Vol 48 (12) ◽  
pp. 4542-4549 ◽  
Author(s):  
Simon J. F. Macdonald ◽  
Keith G. Watson ◽  
Rachel Cameron ◽  
David K. Chalmers ◽  
Derek A. Demaine ◽  
...  

ABSTRACT Dimeric derivatives (compounds 7 to 9) of the influenza virus neuraminidase inhibitor zanamivir (compound 2), which have linking groups of 14 to 18 atoms in length, are approximately 100-fold more potent inhibitors of influenza virus replication in vitro and in vivo than zanamivir. The observed optimum linker length of 18 to 22 Å, together with observations that the dimers cause aggregation of isolated neuraminidase tetramers and whole virus, indicate that the dimers benefit from multivalent binding via intertetramer and intervirion linkages. The outstanding long-lasting protective activities shown by compounds 8 and 9 in mouse influenza infectivity experiments and the extremely long residence times observed in the lungs of rats suggest that a single low dose of a dimer would provide effective treatment and prophylaxis for influenza virus infections.


2005 ◽  
Vol 49 (3) ◽  
pp. 981-986 ◽  
Author(s):  
Yousuke Furuta ◽  
Kazumi Takahashi ◽  
Masako Kuno-Maekawa ◽  
Hidehiro Sangawa ◽  
Sayuri Uehara ◽  
...  

ABSTRACT T-705, a substituted pyrazine compound, has been found to exhibit potent anti-influenza virus activity in vitro and in vivo. In a time-of-addition study, it was indicated that T-705 targeted an early to middle stage of the viral replication cycle but had no effect on the adsorption or release stage. The anti-influenza virus activity of T-705 was attenuated by addition of purines and purine nucleosides, including adenosine, guanosine, inosine, and hypoxanthine, whereas pyrimidines did not affect its activity. T-705-4-ribofuranosyl-5′-triphosphate (T-705RTP) and T-705-4-ribofuranosyl-5′-monophosphate (T-705RMP) were detected in MDCK cells treated with T-705. T-705RTP inhibited influenza virus RNA polymerase activity in a dose-dependent and a GTP-competitive manner. Unlike ribavirin, T-705 did not have an influence on cellular DNA or RNA synthesis. Inhibition of cellular IMP dehydrogenase by T-705RMP was about 150-fold weaker than that by ribavirin monophosphate, indicating the specificity of the anti-influenza virus activity and lower level of cytotoxicity of T-705. These results suggest that T-705RTP, which is generated in infected cells, may function as a specific inhibitor of influenza virus RNA polymerase and contributes to the selective anti-influenza virus activity of T-705.


2021 ◽  
Author(s):  
Ericka Kirkpatrick Roubidoux ◽  
Meagan McMahon ◽  
Juan Manuel Carreno ◽  
Christina Capuano ◽  
Kaijun Jiang ◽  
...  

Influenza virus neuraminidase (NA) targeting antibodies are an independent correlate of protection against infection. Antibodies against the NA act by blocking enzymatic activity, preventing virus release and transmission. As we advance the development of improved influenza virus vaccines that incorporate standard amounts of NA antigen, it is important to identify the antigenic targets of human monoclonal antibodies (mAbs). Additionally, it is important to understand how escape from mAbs changes viral fitness. Here, we describe escape mutants generated by serial passage of A/Netherlands/602/2009 (H1N1) in the presence of human anti-N1 mAbs. We observed escape mutations on the N1 protein around the enzymatic site (S364N, N369T and R430Q) and also detected escape mutations located on the sides and bottom of the NA (N88D, N270D and Q313K/R). We found that a majority of escape mutant viruses had increased fitness in vitro but not in vivo. This work increases our understanding of how human antibody responses target the N1 protein.


2001 ◽  
Vol 45 (4) ◽  
pp. 1162-1167 ◽  
Author(s):  
S. Bantia ◽  
C. D. Parker ◽  
S. L. Ananth ◽  
L. L. Horn ◽  
K. Andries ◽  
...  

ABSTRACT We have recently reported an influenza virus neuraminidase inhibitor, RWJ-270201 (BCX-1812), a novel cyclopentane derivative discovered through structure-based drug design. In this paper, we compare the potency of three compounds, RWJ-270201, oseltamivir, and zanamivir, against neuraminidase enzymes from various subtypes of influenza. RWJ-270201 effectively inhibited all tested influenza A and influenza B neuraminidases in vitro, with 50% inhibitory concentrations of 0.09 to 1.4 nM for influenza A neuraminidases and 0.6 to 11 nM for influenza B neuraminidases. These values were comparable to or lower than those for oseltamivir carboxylate (GS4071) and zanamivir (GG167). RWJ-270201 demonstrated excellent selectivity (>10,000-fold) for influenza virus neuraminidase over mammalian, bacterial, or other viral neuraminidases. Oral administration of a dosage of 1 mg/kg of body weight/day of RWJ-270201 for 5 days (beginning 4 h preinfection) showed efficacy in the murine model of influenza virus infection as determined by lethality and weight loss protection. RWJ-270201 administered intranasally at 0.01 mg/kg/day in the murine influenza model demonstrated complete protection against lethality, whereas oseltamivir carboxylate and zanamivir at the same dose demonstrated only partial protection. In the delayed-treatment murine influenza model, oral administration of a 10-mg/kg/day dose of RWJ-270201 or oseltamivir (GS4104, a prodrug of GS4071) at 24 h postinfection showed significant protection against lethality (P < 0.001 versus control). However, when the treatment was delayed for 48 h, no significant protection was observed in either drug group. No drug-related toxicity was observed in mice receiving 100 mg/kg/day of RWJ-270201 for 5 days. These efficacy and safety profiles justify further consideration of RWJ-270201 for the treatment and prevention of human influenza.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5023-5023
Author(s):  
Joseph Senn ◽  
Vilmos Csizmadia ◽  
Paul Hales ◽  
Larry Dick ◽  
Vivek J. Kadambi

Abstract Abstract 5023 Based on unprecedented efficacy, the proteasome inhibitor (PI) bortezomib has become the cornerstone of multiple myeloma treatment. Nevertheless, in a subset of patients bortezomib causes painful peripheral neuropathy and this side effect can limit its potential benefit for those patients. Although the mechanism of bortezomib associated neuropathy is unknown, we have previously suggested that it is related to the mechanism of action (Csizmadia at. al. Vet Pathol 2010; 47:358–367.). Recently Arastu-Kapur et al. (Clin Cancer Res 2011;17:2734–2743.) have reported that the serine protease HtrA2/Omi was inhibited by bortezomib (a peptide boronate proteasome inhibitor) and not by carfilzomib (an epoxyketone proteasome inhibitor). Further, since HtrA2/Omi is involved in neuronal survival (Martins et al. Mol Cell Biol 2004; 24: 9848–9862.) they suggested that this off target inhibition by bortezomib could be the mechanism underlying bortezomib associated peripheral neuropathy. To confirm and extend these published results, we investigated the effects of these two PIs on HtrA2/Omi activity in recombinant enzyme assays, in SH-SY5Y neuroblastoma-, and wild type and HtrA2/Omi double negative mouse embryonic fibroblast cells (MEF). In contrast to the results of Arastu-Kapur et al., our results clearly demonstrated that neither bortezomib nor carfilzomib inhibits HtrA2/Omi in recombinant enzyme assays at concentrations up to 100μM. As a positive control we used Ucf-101 an HtrA2/Omi specific inhibitor (Cilenti et al. J Biol Chem 2003; 278:11489–11494.) which in our assay behaved in a manner consistent with the published literature. Similarly, in MEF cells, only Ucf-101 prevented the degradation of validated HtrA2/Omi substrates eIF4G1 and UCH-L1, while neither bortezomib nor carfilzomib prevented the degradation of these two substrates. In conclusion, we have assessed the protease activity of HtrA2/Omi both in vitro with purified enzyme and in cultured cells and we find that neither PI inhibits this protease. Therefore we think it is unlikely that PI associated peripheral neuropathy is caused by off target inhibition of HtrA2/Omi. Further research is needed to understand the side effects of PIs. Disclosures: Senn: Millennium Pharmaceuticals, Inc.: Employment. Csizmadia:Millennium Pharmaceuticals, Inc.: Employment. Hales:Millennium Pharmaceuticals, Inc.: Employment. Dick:Millennium Pharmaceuticals, Inc.: Employment. Kadambi:Millennium Pharmaceuticals, Inc.: Employment.


ADMET & DMPK ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22-43 ◽  
Author(s):  
Guanghua Gao ◽  
Francis Law ◽  
Ricky Ngok Shun Wong ◽  
Nai Ki Mak ◽  
Mildred Sze Ming Yang

Oseltamivir phosphate (OP, Tamiflu®) is a widely used prodrug for the treatment of influenza viral infections. Orally administered OP is rapidly hydrolyzed by the carboxylesterases in animals to oseltamivir carboxylate (OC), a potent influenza virus neuraminidase inhibitor. The goals of this study were to develop and validate a physiologically-based pharmacokinetic (PBPK) model of OP/OC in rats and humans, and to predict the internal tissue doses for OP and OC in humans after receiving OP orally. To this end, a PBPK model of OP/OC was first developed in the rat, which was then scaled up to humans by replacing the physiological and biochemical parameters with human-specific values. The proposed PBPK model consisted of an OP and an OC sub-models each containing nine first-order, flow-limited tissue/organ compartments. OP metabolism to OC was assumed to carry out mainly by hepatic carboxylesterases although extra-hepatic metabolism also occurred especially in the plasma. The PBPK model was developed and validated by experimental data from our laboratories and from the literature. The proposed PBPK model accurately predicted the pharmacokinetic behavior of OP and OC in humans and rats after receiving a single or multiple doses of OP orally or an OC dose i.v. The PBPK model was used to predict the internal tissue doses of OP and OC in a hypothetical human after receiving the recommended dose of 75 mg/kg OP b.i.d. for 6 days. Steady-state OC concentrations in the plasma and major organs such as the lung and the brain were higher than the minimum in vitro IC50 reported for H1N1 influenza virus neuraminidase, confirming OP is an effective, anti-viral agent. OP side-effects in the gastrointestinal tract and brain of humans were explainable by the tissue doses found in these organs. The PBPK model provides a quantitative tool to evaluate the relationship between an externally applied dose of OP and the internal tissue doses in humans. As such the model can be used to adjust the dose regimens for adult patients in disease states e.g., renal failure and liver damage.


Sign in / Sign up

Export Citation Format

Share Document